Region Growing; Unsupervised segmentation; 3D Point Cloud; Classification; Random Forest; Feature Extraction; RANSAC; Self-Learning
Abstract :
[en] Abstract. Point cloud data of indoor scenes is primarily composed of planar-dominant elements. Automatic shape segmentation is thus valuable to avoid labour intensive labelling. This paper provides a fully unsupervised region growing segmentation approach for efficient clustering of massive 3D point clouds. Our contribution targets a low-level grouping beneficial to object-based classification. We argue that the use of relevant segments for object-based classification has the potential to perform better in terms of recognition accuracy, computing time and lowers the manual labelling time needed. However, fully unsupervised approaches are rare due to a lack of proper generalisation of user-defined parameters. We propose a self-learning heuristic process to define optimal parameters, and we validate our method on a large and richly annotated dataset (S3DIS) yielding 88.1\% average F1-score for object-based classification. It permits to automatically segment indoor point clouds with no prior knowledge at commercially viable performance and is the foundation for efficient indoor 3D modelling in cluttered point clouds.
Bassier, M., Vergauwen, M., Poux, F., 2020. Point Cloud vs. Mesh Features for Building Interior Classification. Remote Sensing 12, 2224. https://doi.org/10.3390/rs12142224
Belgiu, M., Dragut, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Deschaud, J.-E., Goulette, F., 2010. A fast and accurate plane detection algorithm for large noisy point clouds using filtered normals and voxel growing, in: 3DPVT.
Dong, Z., Yang, B., Hu, P., Scherer, S., 2018. An efficient global energy optimisation approach for robust 3D plane segmentation of point clouds. ISPRS International Journal of Photogrammetry and Remote Sensing 137, 112-133. https://doi.org/10.1016/j.isprsjprs.2018.01.013
Hulik, R., Spanel, M., Smrz, P., Materna, Z., 2014. Continuous plane detection in point-cloud data based on 3D Hough Transform. Journal of visual communication and image representation 25, 86-97.
Kharroubi, A., Hajji, R., Billen, R., Poux, F., 2019. CLASSIFICATION AND INTEGRATION OF MASSIVE 3D POINTS CLOUDS IN A VIRTUAL REALITY (VR) ENVIRONMENT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42, 165-171. https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019
Li, B., Schnabel, R., Klein, R., Cheng, Z., Dang, G., Jin, S., 2010. Robust normal estimation for point clouds with sharp features. Computers &Graphics 34, 94-106.
Li, L., Yang, F., Zhu, H., Li, D., Li, Y., Tang, L., 2017. An improved RANSAC for 3D point cloud plane segmentation based on normal distribution transformation cells. Remote Sensing 9, 433.
Limberger, F.A., Oliveira, M.M., 2015. Real-time detection of planar regions in unorganised point clouds. Pattern Recognition 48, 2043-2053.
Liu, Y.-S., Ramani, K., 2009. Robust principal axes determination for point-based shapes using least median of squares. Computer aided design 41, 293-305. https://doi.org/10.1016/j.cad.2008.10.012
Mayr, A., Rutzinger, M., Bremer, M., Oude Elberink, S., Stumpf, F., Geitner, C., 2017. Object-based classification of terrestrial laser scanning point clouds for landslide monitoring. The Photogrammetric Record 32, 377-397. https://doi.org/10.1111/phor.12215
Miliaresis, G., Kokkas, N., 2007. Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs. Computers and Geosciences 33, 1076-1087. https://doi.org/10.1016/j.cageo.2006.11.012
Poux, F., Billen, R., 2019. Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs deep learning methods. ISPRS International Journal of Geo-Information 8, 213. https://doi.org/10.3390/ijgi8050213
Poux, F., Hallot, P., Neuville, R., Billen, R., 2016. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W1, 119-127. https://doi.org/10.5194/isprs-annals-IV-2-W1-119-2016
Poux, F., Neuville, R., Hallot, P., Billen, R., 2017a. MODEL FOR SEMANTICALLY RICH POINT CLOUD DATA. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W5, 107-115. https://doi.org/10.5194/isprs-annals-IV-4-W5-107-2017
Poux, F., Neuville, R., Nys, G.-A., Billen, R., 2018. 3D Point Cloud Semantic Modelling: Integrated Framework for Indoor Spaces and Furniture. Remote Sensing 10, 1412. https://doi.org/10.3390/rs10091412
Poux, F., Neuville, R., Van Wersch, L., Nys, G.-A., Billen, R., 2017b. 3D Point Clouds in Archaeology: Advances in Acquisition, Processing and Knowledge Integration Applied to Quasi-Planar Objects. Geosciences 7, 96. https://doi.org/10.3390/geosciences7040096
Rabbani, T., Heuvel, F. Van Den, 2005. Efficient hough transform for automatic detection of cylinders in point clouds, in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. Enschede, pp. 60-65.
Rutzinger, M., Höfle, B., Hollaus, M., Pfeifer, N., 2008. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification. Sensors 8, 4505-4528. https://doi.org/10.3390/s8084505
Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for Point Cloud Shape Detection. Computer Graphics Forum 26, 214-226. https://doi.org/10.1111/j.1467-8659.2007.01016.x
Son, H., Kim, C., 2017. Semantic as-built 3D modeling of structural elements of buildings based on local concavity and convexity. Advanced Engineering Informatics 34, 114-124. https://doi.org/10.1016/j.aei.2017.10.001
Vo, A.V., Truong-Hong, L., Laefer, D.F., Bertolotto, M., 2015. Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing 104, 88-100. https://doi.org/10.1016/j.isprsjprs.2015.01.011
Vosselman, G., Coenen, M., Rottensteiner, F., 2017. Contextual segment-based classification of airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 128, 354-371. https://doi.org/10.1016/j.isprsjprs.2017.03.010
Wang, J., Lindenbergh, R., Menenti, M., 2017. SigVox - A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 128, 111-129. https://doi.org/10.1016/j.isprsjprs.2017.03.012
Weber, C., Hahmann, S., Hagen, H., 2010. Sharp feature detection in point clouds, in: International Conference on Shape Modeling and Applications. IEEE, Washington, United States, pp. 175-186. https://doi.org/10.1109/SMI.2010.32
Weinmann, M., Jutzi, B., Hinz, S., Mallet, C., 2015. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing 105, 286-304. https://doi.org/10.1016/j.isprsjprs.2015.01.016
Xiao, J., Zhang, Jianhua, Adler, B., Zhang, H., Zhang, Jianwei, 2013. Three-dimensional point cloud plane segmentation in both structured and unstructured environments. Robotics and Autonomous Systems 61, 1641-1652.
Xie, Y., Tian, J., Zhu, X.X., 2019. A Review of Point Cloud Semantic Segmentation. arXiv.org 1-51.
Xu, B., Jiang, W., Shan, J., Zhang, J., Li, L., 2016. Investigation on the weighted ransac approaches for building roof plane segmentation from lidar point clouds. Remote Sensing 8, 5.
Zhang, J.X., Lin, X.G., Lin, X.G., 2012. object-based classification of urban airborne lidar point clouds with multiple echoes using svm, in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. pp. 135-140. https://doi.org/10.5194/isprsannals-I-3-135-2012