Paper published in a journal (Scientific congresses and symposiums)
Unsupervised segmentation of indoor 3D point cloud: application to object-based classification
Poux, Florent; Mattes, Christian; Kobbelt, Leif
2020In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-4 (W1-2020), p. 111-118
Peer Reviewed verified by ORBi
 

Files


Full Text
isprs-archives-XLIV-4-W1-2020-111-2020.pdf
Publisher postprint (2.06 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Region Growing; Unsupervised segmentation; 3D Point Cloud; Classification; Random Forest; Feature Extraction; RANSAC; Self-Learning
Abstract :
[en] Abstract. Point cloud data of indoor scenes is primarily composed of planar-dominant elements. Automatic shape segmentation is thus valuable to avoid labour intensive labelling. This paper provides a fully unsupervised region growing segmentation approach for efficient clustering of massive 3D point clouds. Our contribution targets a low-level grouping beneficial to object-based classification. We argue that the use of relevant segments for object-based classification has the potential to perform better in terms of recognition accuracy, computing time and lowers the manual labelling time needed. However, fully unsupervised approaches are rare due to a lack of proper generalisation of user-defined parameters. We propose a self-learning heuristic process to define optimal parameters, and we validate our method on a large and richly annotated dataset (S3DIS) yielding 88.1\% average F1-score for object-based classification. It permits to automatically segment indoor point clouds with no prior knowledge at commercially viable performance and is the foundation for efficient indoor 3D modelling in cluttered point clouds.
Disciplines :
Earth sciences & physical geography
Computer science
Author, co-author :
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Mattes, Christian
Kobbelt, Leif
Language :
English
Title :
Unsupervised segmentation of indoor 3D point cloud: application to object-based classification
Alternative titles :
[en] Segmentation non supervisée du nuage de points 3d intérieur : application à la classification basée sur les objets
Publication date :
03 September 2020
Event name :
15th 3D GeoInfo Conference
Event organizer :
University College London (UCL)
Event place :
London, United Kingdom
Event date :
du 7 septembre au 11 septembre 2020
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN :
1682-1750
eISSN :
2194-9034
Publisher :
Copernicus, Goettingen, Germany
Volume :
XLIV-4
Issue :
W1-2020
Pages :
111-118
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 September 2020

Statistics


Number of views
779 (12 by ULiège)
Number of downloads
615 (14 by ULiège)

Scopus citations®
 
31
Scopus citations®
without self-citations
29
OpenCitations
 
8
OpenAlex citations
 
29

Bibliography


Similar publications



Contact ORBi