[en] In this study, cumin protein isolates (CPI) and major protein fractions were extracted and separated from cumin seeds, their structure, physicochemical and functional properties were investigated. Albumin (62.29%) and glutelin (25.16%) were the predominant protein fractions of cumin seeds. Glutamic acid (Glu) and aspartic acid (Asp) were the major amino acids of cumin proteins, whereas more hydrophobic and aromatic amino acids were predominantly found in CPI. Electrophoresis profiles indicated that CPI have more disulphide bonds than major protein fractions. The intrinsic fluorescence data revealed that glutelin displayed greater exposure of tyrosine (Tyr) and tryptophan (Trp) residues compared to albumin and CPI. Circular dichroism (CD) data showed CPI presented more α-helix (14.4%) and less β-strand (30.7%) than albumin and glutelin. The atomic force microscope (AFM) profile and hydrodynamic diameter (Dh) determination showed the presence of low particle size in albumin fractions. Differences in the hydrophobicity (Ho) and the zeta-potential (ζ) of CPI, albumin, and glutelin were also observed due to their difference in structure and amino acid composition. Compared with CPI and glutelin, albumin exhibited the highest emulsifying activity (103.67m2/g) and stability (42.84 min) and the smallest emulsion particle size (4.29 μm). The CPI, albumin and glutelin presented typical U-shaped protein solubility–pH curves, with the lowest solubility at pH 4.0. Rheological investigation demonstrated that CPIs were efficient in forming a gel at 80.6 °C, whereas glutelin could form the hardest gel at 92.6°C. The overall results suggested that the cumin proteins can be a promising protein source for the food industry.
Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G. O. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocolloids 2014, 39, 301–318. DOI: 10.1016/j.foodhyd.2014.01.013.
Zhang, Y.; Yang, R.; Zhao, W.; Hua, X.; Zhang, W. Physicochemical and Emulsifying Properties of Protein Extracted from Soybean Meal Assisted by Steam Flash-Explosion. Innovative Food Science and Emerging Technologies 2014, 23, 131–137. DOI: 10.1016/j.ifset.2014.03.009.
Zhang, T.; Jiang, B.; Mu, W.; Wang, Z. Emulsifying Properties of Chickpea Protein Isolates: Influence of pH and NaCl. Food Hydrocolloids 2009, 23(1), 146–152. DOI: 10.1016/j.foodhyd.2007.12.005.
Shevkani, K.; Singh, N.; Kaur, A.; Rana, J. C. Structural and Functional Characterization of Kidney Bean and Field Pea Protein Isolates: A Comparative Study. Food Hydrocolloids 2015, 43(3), 679–689. DOI: 10.1016/j. foodhyd.2014.07.024.
He, X. H.; Liu, H. Z.; Liu, L.; Zhao, G. L.; Wang, Q.; Chen, Q. L. Effects of High Pressure on the Physicochemical and Functional Properties of Peanut Protein Isolates. Food Hydrocolloids 2014, 36, 123– 129. DOI: 10.1016/j.foodhyd.2013.08.031.
Osborne, T. B.;. The Vegetable Proteins; 2nd. Green & Co.: London, 1924.
Branda, H.; Asim, E. Heterogeneity of Soybean Seed Proteins One-Dimensional Electrophoretic Profiles of Six Different Solubility Fractions. Journal of Agricultural and Food Chemistry 1981, 29(3), 497–501. DOI: 10.1021/jf00105a015.
Ragab, D. M.; Babiker, E. E.; Eltinay, A. H. Fractionation, Solubility and Functional Properties of Cowpea (Vigna Unguiculata) Proteins as Affected by pH And/Or Salt Concentration. Food Chemistry 2004, 84(2), 207– 212. DOI: 10.1016/S0308-8146(03)00203-6.
Malomo, S. A.; Aluko, R. E. A Comparative Study of the Structural and Functional Properties of Isolated Hemp Seed (Cannabis Sativa L.) Albumin and Globulin Fractions. Food Hydrocolloids 2015, 43, 743–752. DOI: 10.1016/j.foodhyd.2014.08.001.
Rezig, L.; Riaublanc, A.; Chouaibi, M.; Guéguen, J.; Hamdi, S. Functional Properties of Protein Fractions Obtained from Pumpkin (Cucurbita Maxima) Seed. International Journal of Food Properties 2016, 19(1), 172– 186. DOI: 10.1080/10942912.2015.1020433.
Tang, C. H.; Wang, X. Y. Physicochemical and Structural Characterisation of Globulin and Albumin from Common Buckwheat (Fagopyrum Esculentum Moench) Seeds. Food Chemistry 2010, 121(1), 119–126. DOI: 10.1016/j.foodchem.2009.12.016.
Ma, M.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Yan, Z. Optimization of Extraction Efficiency by Shear Emulsifying Assisted Enzymatic Hydrolysis and Functional Properties of Dietary Fiber from Deoiled Cumin (Cuminum Cyminum L.). Food Chemistry 2015, 179, 270–277. DOI: 10.1016/j.foodchem.2015.01.136.
Siow, H. L.; Gan, C. Y. Functional Protein from Cumin Seed (Cuminum Cyminum): Optimization and Characterization Studies. Food Hydrocolloids 2014, 41, 178–187. DOI: 10.1016/j.foodhyd.2014.04.017.
Hajlaoui, H.; Mighri, H.; Noumi, E.; Snoussi, M.; Trabelsi, N.; Ksouri, R.; Bakhrouf, A. Chemical Composition and Biological Activities of Tunisian Cuminum Cyminum L. Essential Oil: A High Effectiveness against Vibrio Spp. Strains. Food and Chemical Toxicology 2010, 48(8–9), 2186–2192.
Sowbhagya, H. B.; Sathyendra Rao, B. V.; Krishnamurthy, N. Evaluation of Size Reduction and Expansion on Yield and Quality of Cumin (Cuminum Cyminum) Seed Oil. Journal of Food Engineering 2008, 84(4), 595–600. DOI: 10.1016/j.jfoodeng.2007.07.001.
Zare, R.; Heshmati, F.; Fallahzadeh, H.; Nadjarzadeh, A. Complementary Therapies in Clinical Practice Effect of Cumin Powder on Body Composition and Lipid Pro Fi Le in Overweight and Obese Women. Complementary Therapies in Clinical Practice 2014, 20(4), 297–301. DOI: 10.1016/j.ctcp.2014.10.001.
Sowbhagya, H. B.; Suma, P. F.; Mahadevamma, S.; Tharanathan, R. N. Spent Residue from Cumin-a Potential Source of Dietary Fiber. Food Chemistry 2007, 104(3), 1220–1225. DOI: 10.1016/j.foodchem.2007.01.066.
Hinneburg, I.; Damien Dorman, H. J.; Hiltunen, R. Antioxidant Activities of Extracts from Selected Culinary Herbs and Spices. Food Chemistry 2006, 97(1), 122–129. DOI: 10.1016/j.foodchem.2005.03.028.
El-Ghorab, A. H.; Nauman, M.; Anjum, F. M.; Hussain, S.; Nadeem, M. A. Comparative Study on Chemical Composition and Antioxidant Activity of Ginger (Zingiber Officinale) and Cumin (Cuminum Cyminum). Journal of Agricultural amd Food Chemistry 2010, 58(14), 8231–8237. DOI: 10.1021/jf101202x.
Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J. F.; Leal, L. N.; Lamuela-Raventos, R. M. A Comprehensive Study on the Phenolic Profile of Widely Used Culinary Herbs and Spices: Rosemary, Thyme, Oregano, Cinnamon, Cumin and Bay. Food Chemistry 2014, 154, 299–307. DOI: 10.1016/j.foodchem.2013.12.106.
Badr, F. H.; Georgiev, E. V. Amino Acid Composition of Cumin Seed (Cuminum Cyminum L.). Food Chemistry 1990, 38(4), 273–278. DOI: 10.1016/0308-8146(90)90184-6.
Castrignanò, T.; De Meo, P. D.; Cozzetto, D.; Talamo, I. G.; Tramontano, A. The PMDB Protein Model Database. Nucleic Acids Research 2006, 34, D306–D309. DOI: 10.1093/nar/gkj105.
Siow, H. L.; Lim, T. S.; Gan, C. Y. Development of a Workflow for Screening and Identification of α-amylase Inhibitory Peptides from Food Source Using an Integrated Bioinformatics-Phage Display Approach: Case Study-Cumin Seed. Food Chemistry 2017, 214, 67–76. DOI: 10.1016/j.foodchem.2016.07.069.
Siow, H. L.; Gan, C. Y. Optimization Study in Extracting Anti-Oxidative and α-amylase Inhibitor Peptides from Cumin Seeds (Cuminum Cyminum). Journal of Food Biochemistry 2017, 41: e12280. Doi:10.1111/jfbc.12280
Du, Y.; Jiang, Y.; Zhu, X.; Xiong, H.; Shi, S.; Hu, J.; Peng, H.; Zhou, Q.; Sun, W. Physicochemical and Functional Properties of the Protein Isolate and Major Fractions Prepared from Akebia Trifoliata Var. Australis Seed. Food Chemistry 2012, 133(3), 923–929. DOI: 10.1016/j.foodchem.2012.02.005.
Markwell, M.; Haas, S. M.; Bieber, L. L.; Tolbert, N. E. A Modification of the Lowry Procedure to Simplify Protein Determination in Membrane and Lipoprotein Samples. Analytical Biochemistry 1978, 87(1), 206–210. DOI: 10.1016/0003-2697(78)90586-9.
Laemmli, U. K.;. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227(5259), 680–685. DOI: 10.1038/227680a0.
Sreerama, N.; Woody, R. W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Analytical Biochemistry 2000, 287(2), 252–260. DOI: 10.1006/abio.2000.4880.
Peng, W.; Kong, X.; Chen, Y.; Zhang, C.; Yang, Y.; Hua, Y. Effects of Heat Treatment on the Emulsifying Properties of Pea Proteins. Food Hydrocolloids 2016, 52, 301–310. DOI: 10.1016/j.foodhyd.2015.06.025.
Kato, A.; Nakai, S. Hydrophobicity Determined by a Fluorescence Probe Method and Its Correlation with Surface Properties of Proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure 1980, 624(1), 13–20. DOI: 10.1016/0005-2795(80)90220-2.
Yin, S. W.; Chen, J. C.; De, S. S.; Tang, C. H.; Yang, X. Q.; Wen, Q. B.; Qi, J. R. Physicochemical and Structural Characterisation of Protein Isolate, Globulin and Albumin from Soapnut Seeds (Sapindus Mukorossi Gaertn.). Food Chemistry 2011, 128(2), 420–426. DOI: 10.1016/j.foodchem.2011.03.046.
Jarpa-Parra, M.; Bamdad, F.; Wang, Y.; Tian, Z.; Temelli, F.; Han, J.; Chen, L. Optimization of Lentil Protein Extraction and the Influence of Process pH on Protein Structure and Functionality. LWT-Food Science and Technology 2014, 57(2), 461–469. DOI: 10.1016/j.lwt.2014.02.035.
Yin, S. W.; Tang, C. H.; Wen, Q. B.; Yang, X. Q.; Li, L. Functional Properties and in Vitro Trypsin Digestibility of Red Kidney Bean (Phaseolus Vulgaris L.) Protein Isolate: Effect of High-Pressure Treatment. Food Chemistry 2008, 110(4), 938–945. DOI: 10.1016/j.foodchem.2008.02.090.
Guo, X.; Yao, H. Fractionation and Characterization of Tartary Buckwheat Flour Proteins. Food Chemistry 2006, 98(1), 90–94. DOI: 10.1016/j.foodchem.2005.05.055.
Sogi, D. S.; Arora, M. S.; Garg, S. K.; Bawa, A. S. Fractionation and Electrophoresis of Tomato Waste Seed Proteins. Food Chemistry 2002, 76(4), 449–454. DOI: 10.1016/S0308-8146(01)00304-1.
Subagio, A.;. Characterization of Hyacinth Bean (Lablab Purpureus (L.) Sweet) Seeds from Indonesia and Their Protein Isolate. Food Chemistry 2006, 95(1), 65–70. DOI: 10.1016/j.foodchem.2004.12.042.
Gazzola, D.; Vincenzi, S.; Gastaldon, L.; Tolin, S.; Pasini, G.; Curioni, A. The Proteins of the Grape (Vitis Vinifera L.) Seed Endosperm: Fractionation and Identification of the Major Components. Food Chemistry 2014, 155, 132–139. DOI: 10.1016/j.foodchem.2014.01.032.
Stone, A. K.; Karalash, A.; Tyler, R. T.; Warkentin, T. D.; Nickerson, M. T. Functional Attributes of Pea Protein Isolates Prepared Using Different Extraction Methods and Cultivars. Food Research International 2015, 76, 31– 38. DOI: 10.1016/j.foodres.2014.11.017.
Arogundade, L. A.; Mu, T.; Akinhanmi, T. F. Structural, Physicochemical and Interfacial Stabilisation Properties of Ultra Filtered African Yam Bean (Sphenostylis Stenocarpa) Protein Isolate Compared with Those of Isoelectric Protein Isolate. LWT-Food Science and Technology 2016, 69, 400–408. DOI: 10.1016/j. lwt.2016.01.049.
FAO/WHO. Protein Quality Evaluation; Report of joint FAO/WHO expert consultation: Rome, Italy, 1991.
Kelly, S. M.; Price, N. C. The Application of Circular Dichroism to Studies of Protein Folding and Unfolding. Biochimca et Biophysica Acta 1997, 1338, 161–185. DOI: 10.1016/S0167-4838(96)00190-2.
Yang, J. T.; Wu, C. C.; Martinez, H. M. Calculation of Protein Conformation from Circular Dichroism. Methods Enzymol 1986, 130, 208–269.
Mundi, S.; Aluko, R. E. Effects of NaCl and pH on the Structural Conformations of Kidney Bean Vicilin. Food Chemistry 2013, 139, 624–630. DOI: 10.1016/j.foodchem.2012.12.051.
Jahaniaval, F.; Kakuda, Y.; Abraham, V.; Marcone, M. F. Soluble Protein Fractions from pH and Heat Treated Sodium Caseinate: Physicochemical and Functional Properties. Food Research International 2000, 33(8), 637– 647. DOI: 10.1016/S0963-9969(00)00108-3.
Liang, H. N.; Tang, C. H. pH-dependent Emulsifying Properties of Pea [Pisum Sativum (L.)] Proteins. Food Hydrocolloids 2013, 33(2), 309–319. DOI: 10.1016/j.foodhyd.2013.04.005.
Moure, A.; Sineiro, J.; Domínguez, H.; Parajó, J. C. Functionality of Oilseed Protein Products: A Review. Food Research International 2006, 39, 945–963. DOI: 10.1016/j.foodres.2006.07.002.
Mu, T. H.; Tan, S. S.; Xue, Y. L.; Chen, J. W. The Amino Acid Composition, Solubility and Emulsifying Properties of Sweet Potato Protein. Food Chemistry 2009, 112(4), 1002–1005. DOI: 10.1016/j.foodchem.2008.07.012.
Kim, J. H. J.; Varankovich, N. V.; Nickerson, M. T. The Effect of pH on the Gelling Behaviour of Canola and Soy Protein Isolates. Food Research International 2016, 81, 31–38. DOI: 10.1016/j.foodres.2015.12.029.
Tan, S. H.; Mailer, R. J.; Blanchard, C. L.; Agboola, S. O.; Day, L. Gelling Properties of Protein Fractions and Protein Isolate Extracted from Australian Canola Meal. Food Research International 2014, 62, 819–828. DOI: 10.1016/j. foodres.2014.04.055.
Arogundade, L. A.; Mu, T. H.; Añón, M. C. Heat-Induced Gelation Properties of Isoelectric and Ultrafiltered Sweet Potato Protein Isolate and Their Gel Microstructure. Food Research International 2012, 49(1), 216–225. DOI: 10.1016/j.foodres.2012.07.061.
Wang, X. S., Tang, C. H., Li, B. S., Yang X. Q., Li Ling, Ma C. Y. Effects of High-Pressure Treatment on Some Physicochemical and Functional Properties of Soy Protein Isolates. Food Hydrocolloids 2008, 22(4), 560–567. DOI: 10.1016/j.foodhyd.2007.01.027.
Speroni, F., Beaumal, V., Lamballerie, M. de, Añón M. C., Puppo M. C. Gelation of Soybean Proteins Induced by Sequential High-Pressureand Thermaltreatments. Food hydrocolloids 2009, 23, 1433–1442. DOI: 10.1016/j. foodhyd.2008.11.008.