[en] Ionospheric conductivity perpendicular to the magnetic field plays a crucial role in the electrical coupling between planetary magnetospheres and ionospheres. At Jupiter, it controls the flow of ionospheric current from above and the closure of the magnetosphere‐ionosphere circuit in the
ionosphere. We use multispectral images collected with the Ultraviolet Spectral (UVS) imager on board Juno to estimate the two‐dimensional distribution of the electron energy flux and characteristic energy. These values are fed to an ionospheric model describing the generation and loss of different ion species, to calculate the auroral Pedersen conductivity. The vertical distributions of H3+, hydrocarbon ions, and electrons are calculated at steady state for each UVS pixel to characterize the spatial distribution of electrical conductance in the auroral region. We find that the main contribution to the Pedersen conductance stems from collisions of H3+and heavier ions with H2. However, hydrocarbon ions contribute as much as 50% to Σp when the auroral electrons penetrate below the homopause. The largest values are usually associated with the bright
main emission, the Io auroral footprint and occasional bright emissions at high latitude. We present
examples of maps for both hemispheres based on Juno‐UVS images, with Pedersen conductance ranging from less than 0.1 to a few mhos.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G.R.
Hue, Vincent
Greathouse, T.K.
Versteeg, M.
Kammer, J.A.
Blanc, Michel
Language :
English
Title :
Spatial Distribution of the Pedersen Conductance in the Jovian Aurora From Juno‐UVS Spectral Images
Publication date :
16 July 2020
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Wiley, Hoboken, United States - New Jersey
Volume :
125
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ASE - Agence Spatiale Européenne BELSPO - Politique scientifique fédérale
Achilleos, N., Miller, S., Tennyson, J., Aylward, A. D., Mueller-Wodarg, I., & Rees, D. (1998). JIM: A time-dependent, three-dimensional model of Jupiter's thermosphere and ionosphere. Journal of Geophysical Research, 103(E9), 20089–20112. https://doi.org/10.1029/98JE00947
Badman, S. V., Branduardi-Raymont, G., Galand, M., Hess, S. L. G., Krupp, N., Lamy, L., Melin, H., & Tao, C. (2015). Auroral processes at the giant planets: Energy deposition, emission mechanisms, morphology and spectra. Space Science Reviews, 187(1-4), 99–179. https://doi.org/10.1007/s11214-014-0042-x
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Connerney, J. E. P., Cowley, S. W. H., Ebert, R. W., Gladstone, G. R., Hansen, C. J., Kurth, W. S., Levin, S. M., Mauk, B. H., McComas, D. J., Paranicas, C. P., Santos-Costa, D., Thorne, R. M., Valek, P., Waite, J. H., & Zarka, P. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Banks, P. M., & Kockarts, G. (1973). Aeronomy. New-York: Academic Press.
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., Orton, G. S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S. K., Mokashi, P., Thorne, R., & Thorpe, R. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., Davis, M. W., Vogt, M. F., Gérard, J. C., Radioti, A., Bolton, S., Levin, S. M., Connerney, J. E. P., Mauk, B. H., Valek, P., Adriani, A., & Kurth, W. S. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017GL073114
Bougher, S. W., Waite, J. H. Jr., Majeed, T., & Gladstone, G. R. (2005). Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 110, E04008. https://doi.org/10.1029/2003JE002230
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., Allegrini, F., Gladstone, R., Bagenal, F., Bolton, S., & Bonfond, B. (2018). Precipitating electron energy flux and characteristic energies in Jupiter's main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 123, 7554–7567. https://doi.org/10.1029/2018JA025639
Clarke, J. T., Grodent, D., Cowley, S. W., Bunce, E. J., Zarka, P., Connerney, J. E., & Satoh, T. (2004). Jupiter's aurora. Jupiter: The Planet, Satellites and Magnetosphere, 1, 639–670.
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Coumans, V., Gérard, J. C., Hubert, B., Meurant, M., & Mende, S. B. (2004). Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations. Annales Geophysicae, 22(5), 1595–1611. https://doi.org/10.5194/angeo-22-1595-2004
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system. Planetary and Space Science, 49(10-11), 1067–1088. https://doi.org/10.1016/S0032-0633(00)00167-7
Dinelli, B. M., Fabiano, F., Adriani, A., Altieri, F., Moriconi, M. L., Mura, A., Sindoni, G., Filacchione, G., Tosi, F., Migliorini, A., Grassi, D., Piccioni, G., Noschese, R., Cicchetti, A., Bolton, S. J., Connerney, J. E. P., Atreya, S. K., Bagenal, F., Gladstone, G. R., Hansen, C. J., Kurth, W. S., Levin, S. M., Mauk, B. H., McComas, D. J., Gèrard, J. C., Turrini, D., Stefani, S., Amoroso, M., & Olivieri, A. (2017). Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 44, 4625–4632. https://doi.org/10.1002/2017GL072929
Gérard, J. C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124, 8298–8317. https://doi.org/10.1029/2019ja026862
Gérard, J. C., Gustin, J., Grodent, D., Delamere, P., & Clarke, J. T. (2002). The excitation of the FUV Io tail on Jupiter: Characterization of the electron precipitation. Journal of Geophysical Research, 107(A11), 1394. https://doi.org/10.1029/2002JA009410
Gérard, J. C., & Singh, V. A. (1982). Model of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. Journal of Geophysical Research, 87, 4525.
Germany, G. A., Torr, D. G., Richards, P. G., Torr, M. R., & John, S. (1994). Determination of ionospheric conductivities from FUV auroral emissions. Journal of Geophysical Research, 99(A12), 23297–23,305. https://doi.org/10.1029/94JA02038
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., Versteeg, M. H., Persson, K. B., Young, M. K., Dirks, G. J., Sawka, A. O., Tumlinson, J., Sykes, H., Beshears, J., Rhoad, C. L., Cravens, J. P., Winters, G. S., Klar, R. A., Lockhart, W., Piepgrass, B. M., Greathouse, T. K., Trantham, B. J., Wilcox, P. M., Jackson, M. W., Siegmund, O. H. W., Vallerga, J. V., Raffanti, R., Martin, A., Gérard, J. C., Grodent, D. C., Bonfond, B., Marquet, B., & Denis, F. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Grodent, D., Waite, J. H. Jr., & Gérard, J. C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000JA900129
Gustin, J., Cowley, S. W. H., Gérard, J.-C., Gladstone, G. R., Grodent, D., & Clarke, J. T. (2006). Characteristics of Jovian morning bright FUV aurora from Hubble space telescope/space telescope imaging spectrograph imaging and spectral observations. Journal of Geophysical Research, 111, A09220. https://doi.org/10.1029/2006JA011730
Gustin, J., Grodent, D., Ray, L. C., Bonfond, B., Bunce, E. J., Nichols, J. D., & Ozak, N. (2016). Characteristics of north Jovian aurora from STIS FUV spectral images. Icarus, 268, 215–241. https://doi.org/10.1016/j.icarus.2015.12.048
Hiraki, Y., & Tao, C. (2008). Parameterization of ionization rate by auroral electron precipitation in Jupiter. Annales de Geophysique, 26(1), 77–86. https://doi.org/10.5194/angeo-26-77-2008
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., Mauk, B. H., Saur, J., Bunce, E. J., Gershman, D. J., Martos, Y. M., Greathouse, T. K., Bolton, S. J., & Levin, S. M. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3(10), 904–909. https://doi.org/10.1038/s41550-019-0819-7
Lam, H. A., Achilleos, N., Miller, S., Tennyson, J., Trafton, L. M., Geballe, T. R., & Ballester, G. E. (1997). A baseline spectroscopic study of the infrared auroras of Jupiter. Icarus, 127(2), 379–393. https://doi.org/10.1006/icar.1997.5698
Majeed, T., Waite, J. H., Bougher, S. W., & Gladstone, G. R. (2009). Processes of auroral thermal structure at Jupiter: Analysis of multispectral temperature observations with the JTGCM. Journal of Geophysical Research, 114, E07005. https://doi.org/10.1029/2008JE003194https://wiley.eproofing.in/Proof.aspx?token=32c88f3ec2f543c1ae52b79b0e73736e015928996#com3
Millward, G., Miller, S., Stallard, T., Aylward, A. D., & Achilleos, N. (2002). On the dynamics of the Jovian ionosphere and thermosphere: III The modelling of auroral conductivity. Icarus, 160(1), 95–107. https://doi.org/10.1006/icar.2002.6951
Moore, L., O'Donoghue, J., Melin, H., Stallard, T., Tao, C., Zieger, B., Clarke, J., Vogt, M. F., Bhakyapaibul, T., Opher, M., Tóth, G., Connerney, J. E. P., Levin, S., & Bolton, S. (2017). Variability of Jupiter's IR H3+ aurorae during Juno approach. Geophysical Research Letters, 44, 4513–4522. https://doi.org/10.1002/2017GL073156
Nichols, J. D., & Cowley, S. W. H. (2004). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Annales Geophysicae, 22(5), 1799–1827. https://doi.org/10.5194/angeo-22-1799-2004
Perry, J. J., Kim, Y. H., Fox, J. L., & Porter, H. S. (1999). Chemistry of the Jovian auroral ionosphere. Journal of Geophysical Research, 104(E7), 16541–16565. https://doi.org/10.1029/1999JE900022
Ray, L. C., Achilleos, N. A., & Yates, J. N. (2015). The effect of including field-aligned potentials in the coupling between Jupiter's thermosphere, ionosphere, and magnetosphere. Journal of Geophysical Research: Space Physics, 120, 6987–7005. https://doi.org/10.1002/2015JA021319
Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2010). Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. Journal of Geophysical Research, 115, A09211. https://doi.org/10.1029/2010JA015423
Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2012). Magnetosphere-ionosphere coupling at Jupiter: A parameter space study. Journal of Geophysical Research, 117, A01205. https://doi.org/10.1029/2011JA016899
Raynaud, E., Lellouch, E., Maillard, J.-P., Gladstone, G. R., Waite, J. H., Bezard, B., Drossart, P., & Fouchet, T. (2004). Spectro-imaging observations of Jupiter's 2 μm auroral emission. I. H3+ distribution and temperature. Icarus, 171(1), 133–152. https://doi.org/10.1016/j.icarus.2004.04.020
Singhal, R. P. (1996). Hall and Pedersen conductivities in the auroral ionosphere of Jupiter. Indian Journal of Radio & Space Physics, 361–366.
Smith, C. G. A., & Aylward, A. D. (2009). Annales Geophysicae, 27, 199–230.
Stallard, T., Miller, S., Millward, G., & Joseph, R. D. (2002). On the dynamics of the Jovian ionosphere and thermosphere. II. The measurement of H3+ vibrational temperature, column density, and total emission. Icarus, 156(2), 498–514. https://doi.org/10.1006/icar.2001.6793
Strobel, D. F., & Atreya, S. K. (1983). Ionosphere. In A. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 51–67). England: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511564574.004
Sundström, G., Mowat, J. R., Danared, H., Datz, S., Broström, L., Filevich, A., Källberg, A., Mannervik, S., Rensfelt, K. G., Sigray, P., & Af Ugglas, M. (1994). Destruction rate of H3+ by low-energy electrons measured in a storage-ring experiment. Science, 263(5148), 785–787. https://doi.org/10.1126/science.263.5148.785
Tao, C., Fujiwara, H., & Kasaba, K. (2009). Neutral wind control of the Jovian magnetosphere–ionosphere current system. Journal of Geophysical Research, 114, A08307. https://doi.org/10.1029/2008JA013966
Tao, C., Fujiwara, H., & Kasaba, Y. (2010). Jovian magnetosphere-ionosphere current characterized by diurnal variation of ionospheric conductance. Planet Space Science, 58(3), 351–364. https://doi.org/10.1016/j.pss.2009.10.005
Bonfond, B., Gustin, J., Gérard, J.-C., Grodent, D., Radioti, A., Palmaerts, B., Badman, S. V., Khurana, K. K., & Tao, C. (2015). The far-ultraviolet main auroral emission at Jupiter—Part 2: Vertical emission profile. Annales Geophysicae, 33(10), 1211–1219. https://doi.org/10.5194/angeo-33-1211-2015
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., Versteeg, M. H., Grodent, D. C., Gérard, J. C., Bolton, S. J., Levin, S. M., & Byron, B. D. (2019). In-flight characterization and calibration of the Juno-Ultraviolet Spectrograph (Juno-UVS). The Astronomical Journal, 157(2), 90. https://doi.org/10.3847/1538-3881/aafb36
Nichols, J. D. (2011). Magnetosphere-ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self-consistent current sheet magnetic field model. Journal of Geophysical Research, 116, A10232. https://doi.org/10.1029/2011JA016922