Personal dosimetry; Interventional radiology; Monte-Carlo simulations; Regression analysis
Abstract :
[en] This paper presents the results of a parametric study on the occupational exposure in interventional radiology to explore the influence of various variables on the staff doses. These variables include the angiography beam settings: x-ray peak voltage (kVp), added copper filtration, field diameter, beam projection and source to detector distance. The study was performed using Monte-Carlo simulations with MCNPX for more than 5600 combinations of parameters that account for different clinical situations. Additionally, the analysis of the results was performed using both multiple and random forest regression to build a predictive model and to quantify the importance of each variable when the variables simultaneously change. Primary and secondary projections were found to have the most effect on the scatter fraction that reaches the operator followed by the effect of changing the x-ray beam quality. The effect of changing the source to image intensifier distance had the lowest effect.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
General principles for the radiation protection of workers. Annals of the ICRP; 1997. 10.1016/S0146-6453(97)88275-9.
Järvinen, H., Buls, N., Clerinx, P., Jansen, J., Miljanić, S., Nikodemová, D., Ranogajec-Komor, M., D'Errico, F., Overview of double dosimetry procedures for the determination of the effective dose to the interventional radiology staff, 2008, 10.1093/rpd/ncn082.
Schueler, B.A., Vrieze, T.J., Bjarnason, H., Stanson, A.W., An investigation of operator exposure in interventional radiology. Radiographics, 2006, 10.1148/rg.265055127.
Koukorava, C., Carinou, E., Ferrari, P., Krim, S., Struelens, L., Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations. Radiat Measur, 2011, 10.1016/j.radmeas.2011.06.057.
Carinou, E., Ferrari, P., Koukorava, C., Krim, S., Struelens, L., Monte Carlo calculations on extremity and eye lens dosimetry for medical staff at interventional radiology procedures. Radiat Prot Dosimetry, 2011, 10.1093/rpd/ncq573.
Ferrari P, Bakhanova E, Becker F, Campani L, Chumak V, Jansen J et al. EURADOS Working Group 12 studies in interventional radiology for medical staff dosimetry. Nuovo Cimento della Societa Italiana di Fisica C 2018; 10.1393/ncc/i2018-18217-2.
Ferrari, P., Becker, F., Jovanovic, Z., Khan, S., Bakhanova, E., Principi, S., Kristic, D., Pierotti, L., Mariotti, F., Faj, D., Turk, T., Nikezic, D., Bertolini, M., Simulation of Hp(10) and effective dose received by the medical staff in interventional radiology procedures. J Radiol Prot, 2019, 10.1088/1361-6498/ab2c42.
Olgar, T., Bor, D., Berkmen, G., Yazar, T., Patient and staff doses for some complex x-ray examinations. J Radiol Prot, 2009, 10.1088/0952-4746/29/3/004.
Badal A, Zafar F, Dong H, Badano A. A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera. In: Medical imaging 2013: physics of medical imaging. ISBN 9780819494429; 2013: 10.1117/12.2008031.
Abdelrahman, M., Lombardo, P., Vanhavere, F., Seret, A., Phillips, C., Covens, P., First steps towards online personal dosimetry using computational methods in interventional radiology: Operator's position tracking and simulation input generation. Radiat Phys Chem, 2020, 10.1016/j.radphyschem.2020.108702.
Podium: Personal online dosimetry using computational methods. ???? URL:https://podium-concerth2020.eu/.
Hernández, G., Fernández, F., A model of tungsten anode x-ray spectra. Med Phys, 10(1118/1), 2016, 4955120.
Hernández, G., Fernández, F., xpecgen: A program to calculate x-ray spectra generated in tungsten anodes. J Open Source Softw, 2016 10.21105/joss.00062.
Pelowitz DB. MCNPX TM User's manual version 2.7.0; 2011. LA-CP-05-0369.
Shultis, J.K., Faw, R.E., An MCNP primer. Structure, 2006.
Vanhavere F, Carinou E, Gualdrini G, Clairand I, Merce MS, Ginjaume M et al. ORAMED: optimization of radiation protection of medical staff; 2012. ISBN 978-3-943701-01-2. DOI: 10.1111/j.1398-9995.2011.02748.x.
Lombardo, P.A., Vanhavere, F., Lebacq, A.L., Struelens, L., Bogaerts, R., Development and validation of the realistic anthropomorphic flexible (RAF) phantom. Health Phys 114:5 (2018), 489–499, 10.1097/HP.0000000000000805.
Almén A, Abdelrahman M, Andersson M, Balcaza V, Camp A, Duch M et al. D9.113 – report from the feasibility study performed in two hospitals. CONCERT European Joint Programme for the Integration of Radiation Protection Research, H2020-662287; 2019. URL: https://www.concert-h2020.eu/Document.ashx?dt=web&file=/Lists/Deliverables/Attachments/190/D9.113_%20Report%20from%20the%20feasibility%20study%20performed%20in%20two%20hospitals_approved08012020.pdf&guid=01b5ac77-b2ec-4cda-9c98-917dba396f0f.
Principi, S., Farah, J., Ferrari, P., Carinou, E., Clairand, I., Ginjaume, M., The influence of operator position, height and body orientation on eye lens dose in interventional radiology and cardiology: Monte Carlo simulations versus realistic clinical measurements. Physica Med, 2016, 10.1016/j.ejmp.2016.08.010.
National Electrical Manufacturers Association. NEMA PS3/ISO 12052, Digital imaging and communications in medicine (DICOM). ???? URL:https://www.nema.org/Standards/Pages/Digital-Imaging-and-Communications-in-Medicine.aspx.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., Scikit-learn, Machine learning in Python. J Mach Learn Res, 2011 arXiv:1201.0490.
Breiman, L., Random forests. Mach Learn, 2001, 10.1023/A:1010933404324.
Harvey, H.B., Sotardi, S.T., The Pareto Principle. J Am College of Radiol, 2018, 10.1016/j.jacr.2018.02.026.
Marshall, N.W., Faulkner, K., The dependence of the scattered radiation dose to personnel on technique factors in diagnostic radiology. Br J Radiol, 1992, 10.1259/0007-1285-65-769-44.
Weil J. The usual vascular access. In: Cardiac catheterization for congenital heart disease: from fetal life to adulthood. Springer-Verlag Milan. ISBN 9788847056817; 2015. p. 159–169. DOI: 10.1007/978-88-470-5681-7_11.