Computational Modeling of Human Mesenchymal Stromal Cell Proliferation and Extra-Cellular Matrix Production in 3D Porous Scaffolds in a Perfusion Bioreactor: The Effect of Growth Factors.
[en] Stem cell expansion on 3D porous scaffolds cultured in bioreactor systems has been shown to be beneficial for maintenance of the original cell functionality in tissue engineering strategies (TE). However, the production of extracellular matrix (ECM) makes harvesting the progenitor cell population from 3D scaffolds a challenge. Medium composition plays a role in stimulating cell proliferation over extracellular matrix (ECM) production. In this regard, a computational model describing tissue growth inside 3D scaffolds can be a great tool in designing optimal experimental conditions. In this study, a computational model describing cell and ECM growth in a perfusion bioreactor is developed, including a description of the effect of a (generic) growth factor on the biological processes taking place inside the 3D scaffold. In the model, the speed of cell and ECM growth depends on the flow-induced shear stress, curvature and the concentrations of oxygen, glucose, lactate, and growth factor. The effect of the simulated growth factor is to differentially enhance cell proliferation over ECM production. After model calibration with historic in-house data, a multi-objective optimization procedure is executed aiming to minimize the total experimental cost whilst maximizing cell growth during culture. The obtained results indicate there are multiple optimum points for the medium refreshment regime and the initial growth factor concentration where a trade-off is made between the final amount of cells and the culture cost. Finally, the model is applied to experiments reported in the literature studying the effects of perfusion-based cell culture and/or growth factor supplementation on cell expansion. The qualitative similarities between the simulation and experimental results, even in the absence of proper model calibration, reinforces the generic character of the proposed modeling framework. The model proposed in this study can contribute to the cost efficient production of cell-based TE products, ultimately contributing to their affordability and accessibility.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Mehrian, Mohammad
Lambrechts, Toon
Papantoniou, Ioannis
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Computational Modeling of Human Mesenchymal Stromal Cell Proliferation and Extra-Cellular Matrix Production in 3D Porous Scaffolds in a Perfusion Bioreactor: The Effect of Growth Factors.
Publication date :
2020
Journal title :
Frontiers in Bioengineering and Biotechnology
eISSN :
2296-4185
Publisher :
Frontiers Research Foundation, Switzerland
Volume :
8
Pages :
376
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 772418 - INSITE - Development and use of an integrated in silico-in vitro mesofluidics system for tissue engineering
Funders :
ERC - European Research Council EC - European Commission
Abbasalizadeh S., Baharvand H., (2013). Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol. Adv. 31, 1600–1623. 10.1016/j.biotechadv.2013.08.00923962714
Atashi F., Modarressi A., Pepper M. S., (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 24, 1150–1163. 10.1089/scd.2014.048425603196
Bancroft G. N., Sikavitsas V. I., Van Den Dolder J., Sheffield T. L., Ambrose C. G., Jansen J. A., et al. (2002). Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 99, 12600–12605. 10.1073/pnas.20229659912242339
Callens S. J., Uyttendaele R. J., Fratila-Apachitei L. E., Zadpoor A. A., (2019). Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 232:119739. 10.1016/j.biomaterials.2019.11973931911284
Carlier A., van Gastel N., Geris L., Carmeliet G., Van Oosterwyck H., (2014). Size does matter: an integrative in vivo-in silico approach for the treatment of critical size bone defects. PLoS Comput. Biol. 10:e1003888. 10.1371/journal.pcbi.100388825375821
Chai Y. C., Roberts S. J., Desmet E., Kerckhofs G., van Gastel N., Geris L., et al. (2012). Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials 33, 3127–3142. 10.1016/j.biomaterials.2012.01.01522269651
Chapman L. A., Shipley R. J., Whiteley J. P., Ellis M. J., Byrne H. M., Waters S. L., (2014). Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling. PLoS ONE 9:e105813. 10.1371/journal.pone.010581325157635
Choi J. R., Pingguan-Murphy B., Abas W. A. B. W., Azmi M. A. N., Omar S. Z., Chua K. H., et al. (2014). Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem. Biophys. Res. Commun. 448, 218–224. 10.1016/j.bbrc.2014.04.09624785372
Datta N., Pham Q. P., Sharma U., Sikavitsas V. I., Jansen J. A., Mikos A. G., (2006). In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc. Natl. Acad. Sci. U.S.A. 103, 2488–2493. 10.1073/pnas.050566110316477044
De Bari C., Dell'Accio F., Vanlauwe J., Eyckmans J., Khan I. M., Archer C. W., et al. (2006). Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 54, 1209–1221. 10.1002/art.2175316575900
Docheva D., Padula D., Popov C., Mutschler W., Clausen-Schaumann H., Schieker M., (2008). Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. J. Cell. Mol. Med. 12, 537–552. 10.1111/j.1582-4934.2007.00138.x18419596
dos Santos F. F., Andrade P. Z., da Silva C. L., Cabral J. M., (2013). Bioreactor design for clinical-grade expansion of stem cells. Biotechnol. J. 8, 644–654. 10.1002/biot.20120037323625834
Eom Y. W., Oh J. E., Lee J. I., Baik S. K., Rhee K. J., Shin H. C., et al. (2014). The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 445, 16–22. 10.1016/j.bbrc.2014.01.08424491556
Eyckmans J., Luyten F. P., (2006). Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng. 12, 2203–2213. 10.1089/ten.2006.12.220316968161
Grayson W. L., Zhao F., Izadpanah R., Bunnell B., Ma T., (2006). Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J. Cell. Physiol. 207, 331–339. 10.1002/jcp.2057116331674
Gregory C. A., Singh H., Perry A. S., Prockop D. J., (2003). The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J. Biol. Chem. 278, 28067–28078. 10.1074/jbc.M30037320012740383
Guyot Y., (2015). A multiphysics multiscale computational framework for the simulation of perfusion bioreactor processes in bone tissue engineering (PhD thesis), Université de Liège. Retrieved from: https://orbi.uliege.be/handle/2268/189105 (accessed January 01, 2020).
Guyot Y., Luyten F., Schrooten J., Papantoniou I., Geris L., (2015). A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnol. Bioeng. 112, 2591–2600. 10.1002/bit.2567226059101
Hankemeier S., Keus M., Zeichen J., Jagodzinski M., Barkhausen T., Bosch U., et al. (2005). Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng. 11, 41–49. 10.1089/ten.2005.11.4115738660
Haycock J. W., (2011). 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1–15. 10.1007/978-1-60761-984-0_121042962
Horn J., (1997). “Multicriterion decision making,” in Handbook of Evolutionary Computation, Vol. 1, eds T. Bäck, D. Fogel, and Z. Michalewicz (IOP Publishing Ltd.; Oxford University Press), F1.9:1–F1.9:15.
Kato H., Taguchi Y., Tominaga K., Kimura D., Yamawaki I., Noguchi M., et al. (2016). High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. J. Periodontol. 87, e44–e51. 10.1902/jop.2015.15047426537370
Kennedy J., (2006). “Swarm intelligence,” in Handbook of Nature-Inspired and Innovative Computing, ed A. Y. Zomaya (Boston, MA: Springer).
Kennedy J., Eberhart R., (1995). “Particle swarm optimization,” Paper Presented at the Proceedings of IEEE International Conference on Neural Networks (Perth, WA, Australia), 4.
Koller M. R., Bender J. G., Miller W. M., Papoutsakis E. T., (1993). Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Biotechnology 11, 358–363. 10.1038/nbt0393-3587680209
Lambrechts T., Papantoniou I., Rice B., Schrooten J., Luyten F. P., Aerts J.-M., (2016). Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy 18, 1219–1233. 10.1016/j.jcyt.2016.05.01327421744
Lambrechts T., Papantoniou I., Sonnaert M., Schrooten J., Aerts J. M., (2014). Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnol. Bioeng. 111, 1982–1992. 10.1002/bit.2527424771348
Lemon G., Waters S. L., Rose F. R., King J. R., (2007). Mathematical modelling of human mesenchymal stem cell proliferation and differentiation inside artificial porous scaffolds. J. Theor. Biol. 249, 543–553. 10.1016/j.jtbi.2007.08.01517897681
Li J., Pei M., (2010). Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Eng. Part A 17, 703–712. 10.1089/ten.tea.2010.033920929284
Martin I., Wendt D., Heberer M., (2004). The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86. 10.1016/j.tibtech.2003.12.00114757042
Matsiko A., Gleeson J. P., O'Brien F. J., (2014). Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng. Part A 21, 486–497. 10.1089/ten.tea.2013.054525203687
McCoy R. J., O'Brien F. J., (2010). Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B Rev. 16, 587–601. 10.1089/ten.teb.2010.037020799909
Mehrian M., Geris L., (2020). Optimizing neotissue growth inside perfusion bioreactors with respect to culture and labor cost: a multi-objective optimization study using evolutionary algorithms. Comput. Methods Biomechan. Biomed. Eng. 23, 285–294. 10.1080/10255842.2020.171908131996043
Mehrian M., Guyot Y., Papantoniou I., Olofsson S., Sonnaert M., Misener R., et al. (2018). Maximizing neotissue growth kinetics in a perfusion bioreactor: an in silico strategy using model reduction and Bayesian optimization. Biotechnol. Bioeng. 115, 617–629. 10.1002/bit.2650029205280
Misener R., Gar,í M. F., Rende M., Velliou E., Panoskaltsis N., Pistikopoulos E. N., et al. (2014). Global superstructure optimisation of red blood cell production in a parallelised hollow fibre bioreactor. Comput. Chem. Eng. 71, 532–553. 10.1016/j.compchemeng.2014.10.004
Mishra R., Sefcik R. S., Bishop T. J., Montelone S. M., Crouser N., Welter J. F., et al. (2016). Growth factor dose tuning for bone progenitor cell proliferation and differentiation on resorbable poly (propylene fumarate) scaffolds. Tissue Eng. Part C Methods 22, 904–913. 10.1089/ten.tec.2016.009427558310
Nava M. M., Draghi L., Giordano C., Pietrabissa R., (2016). The effect of scaffold pore size in cartilage tissue engineering. J. Appl. Biomater. Funct. Mater. 14, e223–e229. 10.5301/jabfm.500030227444061
Oh S. H., Kim T. H., Im G. I., Lee J. H., (2010). Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromolecules 11, 1948–1955. 10.1021/bm100199m20690707
Papadimitropoulos A., Piccinini E., Brachat S., Braccini A., Wendt D., Barbero A., et al. (2014). Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion. PLoS ONE 9:e102359. 10.1371/journal.pone.010235925020062
Papantoniou I., Guyot Y., Sonnaert M., Kerckhofs G., Luyten F. P., Geris L., et al. (2014a). Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnol. Bioeng. 111, 2560–2570. 10.1002/bit.2530324902541
Papantoniou I., Sonnaert M., Geris L., Luyten F. P., Schrooten J., Kerckhofs G., (2014b). Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng. Part C Methods 20, 177–187. 10.1089/ten.tec.2013.004123800097
Pei M., He F., Kish V. L., (2011). Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng. Part A 17, 3067–3076. 10.1089/ten.tea.2011.015821740327
Roberts I., Baila S., Rice R. B., Janssens M. E., Nguyen K., Moens N., et al. (2012). Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol. Lett. 34, 2307–2315. 10.1007/s10529-012-1033-122983716
Rodrigues M., Griffith L. G., Wells A., (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res. Ther. 1:32. 10.1186/scrt3220977782
Salter E., Goh B., Hung B., Hutton D., Ghone N., Grayson W. L., (2011). Bone tissue engineering bioreactors: a role in the clinic? Tissue Eng. Part B Rev. 18, 62–75. 10.1089/ten.teb.2011.020921902622
Schneider C. K., Salmikangas P., Jilma B., Flamion B., Todorova L. R., Paphitou A., et al. (2010). Challenges with advanced therapy medicinal products and how to meet them. Nat. Rev. Drug Disc. 9, 195–201. 10.1038/nrd305220190786
Shakhawath Hossain M., Bergstrom D., Chen X., (2015). A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor. Biotechnol. Bioeng. 112, 2601–2610. 10.1002/bit.2567826061385
Singh S., (2014). Effects of different ph and oxygen levels on proliferation and chondrogenic differentiation of human mesenchymal stem cells cultured in hydrogels (Master's thesis). Chalmers University of Technology, Gothenburg, Sweden.
Sonnaert M., Luyten F. P., Schrooten J., Papantoniou I., (2015). Bioreactor-based online recovery of human progenitor cells with uncompromised regenerative potential: a bone tissue engineering perspective. PLoS ONE 10:e0136875. 10.1371/journal.pone.013687526313143
Sonnaert M., Papantoniou I., Bloemen V., Kerckhofs G., Luyten F., Schrooten J., (2017). Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation. J. Tissue Eng. Regen. Med. 11, 519–530. 10.1002/term.195125186024
Stiehler M., Bünger C., Baatrup A., Lind M., Kassem M., Mygind T., (2009). Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mat. Res. Part A 89, 96–107. 10.1002/jbm.a.3196718431785
Van der Stok J., Van der Jagt O. P., Amin Yavari S., De Haas M. F., Waarsing J. H., Jahr H., et al. (2013). Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J. Orthop. Res. 31, 792–799. 10.1002/jor.2229323255164
Wuertz K., Godburn K., Iatridis J. C., (2009). MSC response to pH levels found in degenerating intervertebral discs. Biochem. Biophys. Res. Commun. 379, 824–829. 10.1016/j.bbrc.2008.12.14519133233
Zhou X., Holsbeeks I., Impens S., Sonnaert M., Bloemen V., Luyten F., et al. (2013). Noninvasive real-time monitoring by AlamarBlue® during in vitro culture of three-dimensional tissue-engineered bone constructs. Tissue Engineering Part C Methods 19, 720–729. 10.1089/ten.tec.2012.060123327780