Seeman, E. & Martin, T. J. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat. Rev. Rheumatol. 15, 225–236 (2019). DOI: 10.1038/s41584-019-0172-3
Kameo, Y., Miya, Y., Hayashi, M., Nakashima, T. & Adachi, T. In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Sci. Adv. 6, eaax0938 (2020). DOI: 10.1126/sciadv.aax0938
Gerhard, F. A., Webster, D. J., van Lenthe, G. H. & Müller, R. In silico biology of bone modelling and remodelling: adaptation. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2011–2030 (2009). DOI: 10.1098/rsta.2008.0297
Riggs, M. M. & Cremers, S. Pharmacometrics and systems pharmacology for metabolic bone diseases. Br. J. Clin. Pharmacol. 85, 1136–1146 (2019). DOI: 10.1111/bcp.13881
US Food and Drug Administration. Reporting of Computational Modeling Studies in Medical Device Submissions https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-medical-device-submissions (2016).
The American Society of Mechanical Engineers. Assessing Credibility of Computational Modeling through Verification and Validation: Application to Medical Devices https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices (2018).
Kuemmel, C. et al. Consideration of a credibility assessment framework in model-informed drug development: potential application to physiologically-based pharmacokinetic modeling and simulation. CPT Pharmacometrics Syst. Pharmacol. 9, 21–28 (2020). DOI: 10.1002/psp4.12479
Musuamba, F. T. et al. Verifying and validating quantitative systems pharmacology and in silico models in drug development: current needs, gaps, and challenges. CPT Pharmacometrics Syst. Pharmacol. 9, 195–197 (2020). DOI: 10.1002/psp4.12504