[en] This paper focuses on density-based topology optimization and proposes a combined method to simultaneously impose Minimum length scale in the Solid phase (MinSolid), Minimum length scale in the Void phase (MinVoid) and Maximum length scale in the Solid phase (MaxSolid). MinSolid and MinVoid mean that the size of solid parts and cavities must be greater than the size of a prescribed circle or sphere. This is ensured through the robust design approach based on eroded, intermediate and dilated designs. MaxSolid seeks to restrict the formation of solid parts larger than a prescribed size, which is imposed through local volume restrictions. In the first part of this article, we show that by proportionally restricting the maximum size of the eroded, intermediate and dilated designs, it is possible to obtain optimized designs satisfying, simultaneously, MinSolid, MinVoid and MaxSolid. However, in spite of obtaining designs with crisp boundaries, some results can be difficult to manufacture due to the presence of multiple rounded cavities, which are introduced by the maximum size restriction with the sole purpose of avoiding thick solid members in the structure. To address this issue, in the second part of this article we propose a new geometric constraint that seeks to control the minimum separation distance between two solid members, also called the Minimum Gap (MinGap). Differently from MinVoid, MinGap introduces large void areas that do not necessarily have to be round. 2D and 3D test cases show that simultaneous control of MinSolid, MinVoid, MaxSolid and MinGap can be useful to improve the manufacturability of maximum size constrained designs.
Disciplines :
Mechanical engineering
Author, co-author :
Fernandez Sanchez, Eduardo Felipe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Yang, Kai-ke; Northwestern Polytechnical University > Center of Aerospace Design and Additive Manufacturing
Koppen, Stijn; Delft University of Technology > Precision and microsystems engineering
Alarcon Soto, Pablo ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Bauduin, Simon ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Duysinx, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Language :
English
Title :
Imposing minimum and maximum member size, minimum cavity size, and minimum separation distance between solid members in topology optimization
Publication date :
15 August 2020
Journal title :
Computer Methods in Applied Mechanics and Engineering
Liu, J., Gaynor, A.T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Wang, C.C., Current and future trends in topology optimization for additive manufacturing (2018) Struct. Multidiscip. Optim., 57 (6), pp. 2457-2483
Lazarov, B., Wang, F., Sigmund, O., Length scale and manufacturability in density-based topology optimization (2016) Arch. Appl. Mech., 86, pp. 189-218
Amir, O., Lazarov, B.S., Achieving stress-constrained topological design via length scale control (2018) Struct. Multidiscip. Optim., pp. 1-19
Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Ahuja, B., Design for additive manufacturing: Trends, opportunities, considerations, and constraints (2016) CIRP Ann., 65 (2), pp. 737-760
Clausen, A., Aage, N., Sigmund, O., Exploiting additive manufacturing infill in topology optimization for improved buckling load (2016) Engineering, 2 (2), pp. 250-257
Jansen, M., Lombaert, G., Schevenels, M., Sigmund, O., Topology optimization of fail-safe structures using a simplified local damage model (2014) Struct. Multidiscip. Optim., 49, pp. 657-666
Fernandez, E., Collet, M., Alarcon, P., Bauduin, S., Duysinx, P., An aggregation strategy of maximum size constraints in topology optimization (2019) Struct. Multidiscip. Optim.
Almeida, S.R., Paulino, G.H., Silva, E.C., A simple and effective inverse projection scheme for void distribution control in topology optimization (2009) Struct. Multidiscip. Optim., 39 (4), pp. 359-371
Bruns, T.E., Tortorelli, D.A., Topology optimization of non-linear elastic structures and compliant mechanisms (2001) Comput. Methods Appl. Mech. Engrg., 190 (26-27), pp. 3443-3459
Sigmund, O., Morphology-based black and white filters for topology optimization (2007) Struct. Multidiscip. Optim., 33 (4-5), pp. 401-424
Wang, F., Lazarov, B.S., Sigmund, O., On projection methods, convergence and robust formulations in topology optimization (2011) Struct. Multidiscip. Optim., 43 (6), pp. 767-784
Carstensen, J.V., Guest, J.K., Projection-based two-phase minimum and maximum length scale control in topology optimization (2018) Struct. Multidiscip. Optim., 58 (5), pp. 1845-1860
Zhou, M., Lazarov, B.S., Wang, F., Sigmund, O., Minimum length scale in topology optimization by geometric constraints (2015) Comput. Methods Appl. Mech. Engrg., 293, pp. 266-282
Lazarov, B.S., Wang, F., Maximum length scale in density based topology optimization (2017) Comput. Methods Appl. Mech. Engrg., 318, pp. 826-844
Allaire, G., Jouve, F., Michailidis, G., Thickness control in structural optimization via a level set method (2016) Struct. Multidiscip. Optim., 53 (6), pp. 1349-1382
Liu, J., Ma, Y., A survey of manufacturing oriented topology optimization methods (2016) Adv. Eng. Softw., 100, pp. 161-175
Guest, J., Imposing maximum length scale in topology optimization (2009) Struct. Multidiscip. Optim., 37, pp. 463-473
Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F., PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes (2012) Struct. Multidiscip. Optim., 45 (3), pp. 329-357
Aage, N., Andreassen, E., Lazarov, B.S., Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework (2015) Struct. Multidiscip. Optim., 51 (3), pp. 565-572
Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code (2011) Struct. Multidiscip. Optim., 43 (1), pp. 1-16
Sigmund, O., Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima (1998) Struct. Optim., 16 (1), pp. 68-75
Sigmund, O., Maute, K., Topology optimization approaches (2013) Struct. Multidiscip. Optim., 48 (6), pp. 1031-1055
Clausen, A., Andreassen, E., On filter boundary conditions in topology optimization (2017) Struct. Multidiscip. Optim., 56 (5), pp. 1147-1155
Xing, J.T., Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods, and Applications (2019), pp. 48-50. , Academic Press
Qian, X., Sigmund, O., Topological design of electromechanical actuators with robustness toward over-and under-etching (2013) Comput. Methods Appl. Mech. Engrg., 253, pp. 237-251
Duysinx, P., Sigmund, O., New developments in handling stress constraints in optimal material distribution (1998), 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, U.S.A
Rojas-Labanda, S., Stolpe, M., Automatic penalty continuation in structural topology optimization (2015) Struct. Multidiscip. Optim., 52 (6), pp. 1205-1221
Yang, R., Chen, C., Stress-based topology optimization (1996) Struct. Optim., 12 (2-3), pp. 98-105