Article (Scientific journals)
On the binomial equivalence classes of finite words
Lejeune, Marie; Rigo, Michel; Rosenfeld, Matthieu
2020In International Journal of Algebra and Computation
Peer Reviewed verified by ORBi
 

Files


Full Text
LejeuneRigoRosenfeld-ijacVersion2.pdf
Author postprint (638.13 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
combinatorics on words; context-free languages; binomial coefficients; binomial equivalence; nil-2 group; nilpotent group
Abstract :
[en] Two finite words u and v are k-binomially equivalent if, for each word x of length at most k, x appears the same number of times as a subsequence (i.e., as a scattered subword) of both u and v. This notion generalizes abelian equivalence. In this paper, we study the equivalence classes induced by the k-binomial equivalence. We provide an algorithm generating the 2-binomial equivalence class of a word. For k ≥ 2 and alphabet of 3 or more symbols, the language made of lexicographically least elements of every k-binomial equivalence class and the language of singletons, i.e., the words whose k-binomial equivalence class is restricted to a single element, are shown to be non context-free. As a consequence of our discussions, we also prove that the submonoid generated by the generators of the free nil-2 group (also called free nilpotent group of class 2) on m generators is isomorphic to the quotient of the free monoid {1, . . . , m}^∗ by the 2-binomial equivalence.
Disciplines :
Mathematics
Author, co-author :
Lejeune, Marie ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Rosenfeld, Matthieu
Language :
English
Title :
On the binomial equivalence classes of finite words
Publication date :
2020
Journal title :
International Journal of Algebra and Computation
ISSN :
0218-1967
Publisher :
World Scientific Publishing Co., Singapore
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 02 July 2020

Statistics


Number of views
76 (8 by ULiège)
Number of downloads
50 (3 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
7
OpenCitations
 
3
OpenAlex citations
 
9

Bibliography


Similar publications



Contact ORBi