[en] Water voles from the genus Arvicola display an amazing ecological versatility, with
aquatic and fossorial populations. The Southern water vole (Arvicola sapidus) is
largely accepted as a valid species, as well as the newly described Arvicola persicus.
In contrast, the taxonomic status and evolutionary relationships within Arvicola amphibius
sensu lato had caused a long-standing debate. The phylogenetic relationships
among Arvicola were reconstructed using the mitochondrial cytochrome b gene.
Four lineages within A. amphibius s.l. were identified with good support: Western
European, Eurasiatic, Italian, and Turkish lineages. Fossorial and aquatic forms were
found together in all well-sampled lineages, evidencing that ecotypes do not correspond
to distinct species. However, the Western European lineage mostly includes
fossorial forms whereas the Eurasiatic lineage tends to include mostly aquatic forms.
A morphometric analysis of skull shape evidenced a convergence of aquatic forms of
the Eurasiatic lineage toward the typically aquatic shape of A. sapidus. The fossorial
form of the Western European lineage, in contrast, displayed morphological adaptation
to tooth-digging behavior, with expanded zygomatic arches and proodont incisors.
Fossorial Eurasiatic forms displayed intermediate morphologies. This suggests
a plastic component of skull shape variation, combined with a genetic component
selected by the dominant ecology in each lineage. Integrating genetic distances and
other biological data suggest that the Italian lineage may correspond to an incipient
species (Arvicola italicus). The three other lineages most probably correspond to phylogeographic
variations of a single species (A. amphibius), encompassing the
Disciplines :
Zoology
Author, co-author :
chevret, pascale
Renaud, Sabrina
Helvaci, Zeycan
Ulrich, Rainer
Quere, Jean Pierre
Michaux, Johan ; Université de Liège - ULiège > Département des sciences de la vie > Laboratoire de génétique de la conservation
Language :
English
Title :
Genetic structure, ecological versatility, and skull shape differentiation in Arvicola water voles (Rodentia, Cricetidae).
Publication date :
2020
Journal title :
Journal of Zoological Systematics and Evolutionary Research
Adams, D. C., & Otárola-Castillo, E. (2013). geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4), 393–399. https://doi.org/10.1111/2041-210X.12035
Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: Geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy, 24, 7–14.
Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest, Hungary: Akademiai Kiado.https://doi.org/10.2307/2334537
Amori, G., Gippoliti, S., & Castiglia, R. (2009). European non-volant mammal diversity: Conservation priorities inferred from phylogeographic studies. Folia Zoologica, 58(3), 270–278.
Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Barbosa, S., Pauperio, J., Searle, J. B., & Alves, P. C. (2013). Genetic identification of Iberian rodent species using both mitochondrial and nuclear loci: Application to noninvasive sampling. Molecular Ecology Resources, 13(1), 43–56. https://doi.org/10.1111/1755-0998.12024
Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1(3), 225–243. https://doi.org/10.1016/S1361-8415(97)85012-8
Brace, S., Ruddy, M., Miller, R., Schreve, D. C., Stewart, J. R., & Barnes, I. (2016). The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): Origins and development of the Celtic fringe. Proceedings of the Royal Society B: Biological Sciences, 283, 20160130. https://doi.org/10.1098/rspb.2016.0130
Bryja, J., Mikula, O., Šumbera, R., Meheretu, Y., Aghová, T., Lavrenchenko, L. A., … Verheyen, E. (2014). Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evolutionary Biology, 14(1), 256. https://doi.org/10.1186/s12862-014-0256-2
Castiglia, R., Aloise, G., Amori, G., Annesi, F., Bertolino, S., Capizzi, D., … Colangelo, P. (2016). The Italian peninsula hosts a divergent mtDNA lineage of the water vole, Arvicola amphibius s.l., including fossorial and aquatic ecotypes. Hystrix, the Italian Journal of Mammalogy, 27(2). https://doi.org/10.4404/hystrix-27.2-11588
Cubo, J., Ventura, J., & Casinos, A. (2006). A heterochronic interpretation of the origin of digging adaptations in the northern water vole, Arvicola terrestris (Rodentia: Arvicolidae). Biological Journal of the Linnean Society, 87(3), 381–391. https://doi.org/10.1111/j.1095-8312.2006.00575.x
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109
Durão, A. F., Ventura, J., & Muñoz-Muñoz, F. (2019). Comparative post-weaning ontogeny of the mandible in fossorial and semi-aquatic water voles. Mammalian Biology, 97, 95–103. https://doi.org/10.1016/j.mambio.2019.05.004
Gomes Rodrigues, H., Šumbera, R., & Hautier, L. (2016). Life in burrows channelled the morphological evolution of the skull in rodents: The case of African mole-rats (Bathyergidae, Rodentia). Journal of Mammalian Evolution, 23(2), 175–189. https://doi.org/10.1007/s10914-015-9305-x
Gouy, M., Guindon, S., Gascuel, O., & Lyon, D. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224. https://doi.org/10.1093/molbev/msp259
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010
Heim de Balsac, H., & Guislain, R. (1955). Évolution et spéciation des campagnols du genre Arvicola en territoire français. Mammalia, 19(3), 367–390. https://doi.org/10.1515/mamm.1955.19.3.367
Kohli, B. A., Speer, K. A., Kilpatrick, C. W., Batsaikhan, N., Damdinbaza, D., & Cook, J. A. (2014). Multilocus systematics and non-punctuated evolution of Holarctic Myodini (Rodentia: Arvicolinae). Molecular Phylogenetics and Evolution, 76, 18–29. https://doi.org/10.1016/j.ympev.2014.02.019
Kryštufek, B., Koren, T., Engelberger, S., Horváth, G. F., Purger, J. J., Arslan, A., … Murariu, D. (2015). Fossorial morphotype does not make a species in water voles. Mammalia, 79(3), 293–303. https://doi.org/10.1515/mammalia-2014-0059
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
Mahmoudi, A., Maul, L. C., Khoshyar, M., Darvish, J., Aliabadian, M., & Kryštufek, B. (2020). Evolutionary history of water voles revisited: Confronting a new phylogenetic model from molecular data with the fossil record. Mammalia, 84(2), 171–184. https://doi.org/10.1515/mammalia-2018-0178
Michaux, J. R., Chevret, P., Filippucci, M.-G., & Macholan, M. (2002). Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: Cytochromeb and 12S rRNA. Molecular Phylogenetics and Evolution, 23(2), 123–136. https://doi.org/10.1016/S1055-7903(02)00007-6
Michaux, J., Chevret, P., & Renaud, S. (2007). Morphological diversity of Old World rats and mice (Rodentia, Muridae) mandible in relation with phylogeny and adaptation. Journal of Zoological Systematics and Evolutionary Research, 45(3), 263–279. https://doi.org/10.1111/j.1439-0469.2006.00390.x
Michaux, J. R., Magnanou, E., Paradis, E., Nieberding, C., & Libois, R. (2003). Mitochondrial phylogeography of the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Molecular Ecology, 12(3), 685–697.
Miller, W., Schuster, S. C., Welch, A. J., Ratan, A., Bedoya-Reina, O. C., Zhao, F., … Lindqvist, C. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(36), E2382–E2390. https://doi.org/10.1073/pnas.1210506109
Montgelard, C., Bentz, S., Tirard, C., Verneau, O., & Catzeflis, F. M. (2002). Molecular systematics of sciurognathi (rodentia): The mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Molecular Phylogenetics and Evolution, 22(2), 220–233. https://doi.org/10.1006/mpev.2001.1056
Morel, J. (1979). Le campagnol terrestre en Suisse: Biologie et systématique (Mammalia Rodentia). Lausanne, Switzerland: Université de Lausanne.
Mouton, A., Mortelliti, A., Grill, A., Sara, M., Kryštufek, B., Juškaitis, R., … Michaux, J. R. (2017). Evolutionary history and species delimitations: A case study of the hazel dormouse, Muscardinus avellanarius. Conservation Genetics, 18(1), 181–196. https://doi.org/10.1007/s10592-016-0892-8
Pardiñas, U., Ruelas, D., Bradley, L., Bradley, R., Ordonez, N., Kryštufek, B., …Brito, M. J. (2017). Cricetidae (true hamsters, voles, lemmings and new world rats and mice) - Species accounts of Cricetidae. In D. Wilson, T. E. J. Lacher & R. A. Mittermeier (Eds.), Handbook of the mammals of the world. Volume 7. Rodents II (pp. 280–535). Barcelona, Spain: Lynx Edici.
Paupério, J., Herman, J. S., Melo-Ferreira, J., Jaarola, M., Alves, P. C., & Searle, J. B. (2012). Cryptic speciation in the field vole: A multilocus approach confirms three highly divergent lineages in Eurasia. Molecular Ecology, 21(24), 6015–6032. https://doi.org/10.1111/mec.12024
Rambaut, A. (2012). FigTree v1.4. Retrieved from https://github.com/rambaut/figtree/releases
Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. Retrieved form http://beast.bio.ed.ac.uk/Tracer
Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevin, R., & Auffray, J.-C. (2015). Once upon multivariate analyses: When they tell several stories about biological evolution. PLoS ONE, 10(7), e0132801.
Renaud, S., Hardouin, E. A., Quéré, J. P., & Chevret, P. (2017). Morphometric variations at an ecological scale: Seasonal and local variations in feral and commensal house mice. Mammalian Biology, 87, 1–12. https://doi.org/10.1016/j.mambio.2017.04.004
Rohlf, F. J. (2010). Tpsdig v.2. Ver. 2.16: Ecology and evolution. Stony Brook, NY: SUNY.
Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Biology, 39(1), 40–59.
Ronquist, F., Teslenko, M., van der Mark, P. Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248
Samuels, J. X., & Van Valkenburgh, B. (2009). Craniodental adaptations for digging in extinct burrowing beavers. Journal of Vertebrate Paleontology, 29(1), 254–268.
Schlager, S. (2017). Morpho and Rvcg - Shape analysis in R. In G. Zheng, S. Li & G. Szekely (Eds.), Statistical shape and deformation analysis (pp. 217–256). Cambridge, MA: Academic Press.
Searle, J. B., Kotlík, P., Rambau, R. V., Marková, S., Herman, J. S., & McDevitt, A. D. (2009). The Celtic fringe of Britain: Insights from small mammal phylogeography. Proceedings. Biological Sciences/The Royal Society, 276(1677), 4287–4294. https://doi.org/10.1098/rspb.2009.1422
Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J.-F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464.
Vallejo, R. M., & González-Cózatl, F. X. (2012). Phylogenetic affinities and species limits within the genus Megadontomys (Rodentia: Cricetidae) based on mitochondrial sequence data. Journal of Zoological Systematics and Evolutionary Research, 50(1), 67–75. https://doi.org/10.1111/j.1439-0469.2011.00634.x
Ventura, J., & Casado-Cruz, M. (2011). Post-weaning ontogeny of the mandible in fossorial water voles: Ecological and evolutionary implications. Acta Zoologica, 92(1), 12–20. https://doi.org/10.1111/j.1463-6395.2010.00449.x
Wilson,D.E., &Reeder,D.M.(Eds.)(1993).Mammals species of the world, a taxonomic and geographic reference(2nded.).Washington, DC:Smithsonia.
Wilson, D.E., &Reeder, D.M.(Eds.)(2005). Mammal species of the world(3rded.). Baltimore, MD:The Johns Hopkins University Press.
Wust-Saucy, A. G. (1998). Polymorphisme génétique et phylogéographie du campagnol terrestre Arvicola terrestris. Lausanne, Switzerland: Université de Lausanne.