[en] Soil appears to play a key role in the response of the forest ecosystems to N deposition. Twenty years of experimental moderate N addition in a sub-alpine forest increased nitrate leaching, but the soil immobilized most of the N input, gradually decreasing the C:N ratio. Exchangeable and microbial N were only slightly affected, but denitrification and N<sub>2</sub>O production were increased and soil respiration tended to be reduced while soil microbial communities were remarkably resistant. It is assumed that these changes at the process level are related to the soil microbiome, but soil microbial communities have not been assessed so far at lower taxonomical resolution in this long-term experiment. The aim of this study is to understand the underlying causes of the results obtained so far by assessing how N treatment affects the soil microbiome at different soil depths. We analyzed bacterial and fungal diversity and community structures using Illumina MiSeq sequencing and quantified the responses of the N cycling communities to elevated N loads by quantitative PCR. The microbial functions were assessed by respiration, N mineralization, and potential nitrification. Bacterial and fungal α-diversity, observed richness and Shannon diversity index, remained unchanged upon N addition. Multivariate statistics showed shifts in the structures of fungal but not bacterial communities with N load, while the changes were minor. Differences in the community compositions associated with the N treatment were mainly observed at a lower taxonomical level. We found several fungal OTUs in particular genera such as the ectomycorrhizal fungi Hydnum, Piloderma, Amanita, and Tricholoma that decreased significantly with increased N-loads. We conclude that long-term moderate N addition at this forest site did not strongly affect the soil microbiome (which remained remarkably resistant) and its functioning.
Abarenkov K., Henrik Nilsson R., Larsson K., Alexander I. J., Eberhardt U., Erland S., et al. (2010). The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 186, 281–285. 10.1111/j.1469-8137.2009.0316020409185
Aber J. D., (2002). “Nitrogen saturation in temperate forest ecosystems: current theory, remaining questions and recent advances,” in Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium. Developments in Plant and Soil Sciences, eds W. J. Horst, A. Bürkert, N. Claassen, H. Flessa, W. B. Frommer, H. Goldbach, W. Merbach, H.-W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, M. K. Schenk, and N. von Wirén (Dordrecht: Springer), 179–188.
Allen S. E., (1989). Chemical Analysis of Ecological Materials, 2nd Edn. Oxford, London: Blackwell Scientific Publications.
Allison S. D., Hanson C. A., Treseder K. K., (2007). Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39, 1878–1887. 10.1016/j.soilbio.2007.02.001
Bobbink R., Hicks K., Galloway J., Spranger R., Alkemade M., Ashmore M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59. 10.1890/08-1140.120349829
Bowden R. D., Davidson E., Savage K., Arabia C., Steudler P., (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For. Ecol. Manag. 196, 43–56. 10.1016/j.foreco.2004.03.011
Bowden R. D., Rullo G., Stevens G. R., Steudler P. A., (2000). Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest. J. Environ. Qual. 29, 268–276. 10.2134/jeq2000.00472425002900010034x
Boxman A. W., Blanck K., Brandrud T. E., Emmett B. A., Gundersen P., Hoger-Vorst R. F., et al. (1998). Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. For. Ecol. Manag. 101, 65–79. 10.1016/S0378-1127(97)00126-6
Bredemeier M., Blanck K., Xu Y.-J., Tietema A., Boxman A. W., Emmett B., et al. (1998). Input-output budgets at the NITREX sites. For. Ecol. Manag. 101, 57–64. 10.1016/S0378-1127(97)00125-4
Brunner I., Herzog C., Galiano L., Gessler A., (2019). Plasticity of fine-root traits under long-term irrigation of a water-limited Scots pine forest. Front Plant Sci. 10:701. 10.3389/fpls.2019.0070131231404
Burke D. J., Kretzer A. M., Rygiewicz P. T., Topa M. A., (2006). Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization. FEMS Microbiol. Ecol. 57, 409–419. 10.1111/j.1574-6941.2006.00125.x16907755
Carnol M., Cudlin P., Ineson P., (1999). Impacts of (NH4)2SO4 deposition on Norway spruce (Picea abies [L.] Karst) roots. Water Air Soil Pollut. 116, 111–120. 10.1023/A:1005250710017
Carnol M., Ineson P., Anderson J. M., Beese F., Berg M. P., Bolger T., et al. (1997). The effects of ammonium sulphate deposition and root sinks on soil solution chemistry in coniferous forest soils. Biogeochemistry 38, 255–280. 10.1023/A:1005875505591
Cheng S. J., Hess P. G., Wieder W. R., Thomas R. Q., Nadelhoffer K. J., Vira J., et al. (2019). Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data-model comparison. Biogeosciences 16, 2771–2793. 10.5194/bg-16-2771-2019
Cotrufo M. F., Wallenstein M. D., Boot C. M., Denef K., Paul E., (2013). The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995. 10.1111/gcb.1211323504877
DeForest J. L., Zak D. R., Pregitzer K. S., Burton A. J., (2004). Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biol. Biochem. 39, 1878–1887. 10.1016/j.soilbio.2004.02.011
Demoling F., Nilsson L. O., Bååth E., (2008). Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol. Biochem. 40, 370–379. 10.1016/j.soilbio.2007.08.019
Dise N. B., Wright R. F., (1995). Nitrogen deposition and leaching from European forests. For. Ecol. Manag. 71, 153–162. 10.1016/0378-1127(94)06092-W18291565
Edgar R. C., (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. 10.1093/bioinformatics/btq46120709691
Edgar R. C., (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10, 996–998. 10.1038/nmeth.260423955772
Edgar R. C., Flyvbjerg H., (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482. 10.1093/bioinformatics/btv40126139637
Edwards I. P., Zak D. R., Kellner H., Eisenlord S. D., Pregitzer K. S., (2011). Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6:e20421. 10.1371/journal.pone.0020421
Eisenlord S. D., Freedman Z., Zak D. R., Xue K., He Z., Zhou J., (2013). Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Appl. Environ. Microbiol. 79, 1191–1199. 10.1128/AEM.03156-1223220961
Emmett B. A., Boxman D., Bredemeier M., Gundersen P., Kjønaas O. J., Moldan F., et al. (1998). Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems 1, 352–360. 10.1007/s100219900029
Entwistle E. M., Zak D. R., Edwards I. P., (2013). Long-term experimental nitrogen deposition alters the composition of the active fungal community in the forest floor. Soil Sci. Soc. Am. J. 77, 1648–1658. 10.2136/sssaj2013.05.0179
Erisman J. W., Galloway J., Seitzinger S., Bleeker A., Butterbach-Bahl K., (2011). Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Environ. Sustain. 3, 281–290. 10.1016/j.cosust.2011.08.012
Fan Y., Miguez-Macho G., Jobbágy E. G., Jackson R. B., Otero-Casal C., (2017). Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. U. S. A. 114, 10572–10577. 10.1073/pnas.171238111428923923
Farrer E. C., Suding K. N., (2016). Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes. Ecol. Lett. 19, 1287–1296. 10.1111/ele.1266527531674
Forstner S. J., Wechselberger V., Müller S., Keiblinger K. M., Díaz-Pinés E., Wanek W., et al. (2019a). Vertical redistribution of soil organic carbon pools after twenty years of nitrogen addition in two temperate coniferous forests. Ecosystems 22, 379–400. 10.1007/s10021-018-0275-830956544
Forstner S. J., Wechselberger V., Stecher S., Müller S., Keiblinger K. M., Wanek W., et al. (2019b). Resistant soil microbial communities show signs of increasing phosphorus limitation in two temperate forests after long-term nitrogen addition. Front. For. Glob. Change 2:13. 10.3389/ffgc.2019.00073
Freedman Z. B., Romanowicz K. J., Upchurch R. A., Zak D. R., (2015). Differential responses of total and active soil microbial communities to long-term experimental N deposition. Soil Biol. Biochem. 90, 275–282. 10.1016/j.soilbio.2015.08.014
Frey B., Niklaus P. A., Kremer J., Lüscher P., Zimmermann S., (2011). Heavy-machinery traffic impacts methane emissions as well as methanogen abundance and community structure in oxic forest soils. Appl. Environ. Microbiol. 77, 6060–6068. 10.1128/AEM.05206-1121742929
Frey B., Rime T., Phillips M., Stierli B., Hajdas I., Widmer F., et al. (2016). Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92:fiw018. 10.1093/femsec/fiw01826832204
Frey S. D., Knorr M., Parrent J. L., Simpson R. T., (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171. 10.1016/j.foreco.2004.03.018
Frey S. D., Ollinger S., Nadelhoffer K., Bowden R., Brzostek E., Burton A., et al. (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121, 305–316. 10.1007/s10533-014-0004-0
Frossard A., Donhauser J., Mestrot A., Gygax S., Frey B., (2018). Long- and short-term effects of mercury pollution on the soil microbiome. Soil Biol. Biochem. 120, 191–199. 10.1016/j.soilbio.2018.01.028
Galloway J. N., Dentener F. J., Capone D. G., Boyer E. W., Howarth R. W., Seitzinger S. P., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226. 10.1007/s10533-004-0370-0
Galloway J. N., Townsend A. R., Erisman J. W., Bekunda M., Cai Z., Freney J. R., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892. 10.1126/science.113667418487183
Geisseler D., Scow K. M., (2014). Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem. 75, 54–63. 10.1016/j.soilbio.2014.03.023
Ghani A., Dexter M., Perrott K. W., (2003). Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 35, 1231–1243. 10.1016/S0038-0717(03)00186-X
Gregorich E. G., Beare M. H., Stoklas U., St-Georges P., (2003). Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 113, 237–252. 10.1016/S0016-7061(02)00363-4
Gundale M. J., From F., Bach L. H., Nordin A., (2014). Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Glob. Chang. Biol. 20, 276–286. 10.1111/gcb.1242224115224
Gundersen P., Callesen I., de Vries W., (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ. Pollut. 102, 403–407. 10.1016/S0269-7491(98)80060-2
Gundersen P., Christiansen J. R., Alberti G., Brüggemann N., Castaldi S., Gasche R., et al. (2012). The response of methane and nitrous oxide fluxes to forest change in Europe. Biogeosciences 9, 3999–4012. 10.5194/bg-9-3999-2012
Haas J. C., Street N. R., Sjödin A., Lee N. M., Högberg M. N., Näsholm T., et al. (2018). Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biol. Biochem. 125, 197–209. 10.1016/j.soilbio.2018.07.005
Hagedorn F., Bucher J. B., Schleppi P., (2001a). Contrasting dynamics of dissolved inorganic and organic nitrogen in soil and surface waters of forested catchments with Gleysols. Geoderma 100, 173–192. 10.1016/S0016-7061(00)00085-9
Hagedorn F., Schleppi P., Bucher J. B., Flühler H., (2001b). Retention and leaching of elevated N deposition in a forested ecosystem with Gleysols. Water Air Soil Pollut. 129, 119–142. 10.1023/A:1010397232239
Hart S. C., Stark J. M., Davidson E. A., Firestone M. K., (1994). “Nitrogen mineralization, immobilization, and nitrification,” in Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties, eds R. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, S., A. Tabatabai, et al. (Madison, WI: Soil Science Society of America), 985–1018. 10.2136/sssabookser5.2.c4216897581
Hartmann M., Brunner I., Hagedorn F., Bardgett R. D., Stierli B., Herzog C., et al. (2017). A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol. Ecol. 26, 1190–1206. 10.1111/mec.1399528028891
Hartmann M., Niklaus P. A., Zimmermann S., Schmutz S., Kremer J., Abarenkov K., et al. (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244. 10.1038/ismej.201324030594
Hasselquist N. J., Metcalfe D. B., Högberg P., (2012). Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Glob. Change Biol. 18, 3596–3605. 10.1111/gcb.12001
Haynes B. E., Gower S. T., (1995). Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol. 15, 317–325. 10.1093/treephys/15.5.31714965955
Hesse C. N., Mueller R. C., Vuyisich M., Gallegos-Graves L. V., Gleasner C. D., Zak D. R., et al. (2015). Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Front. Microbiol. 6:337. 10.3389/fmicb.2015.00337
Högberg P., Fan H., Quist M., Binkley D., Tamm C. O., (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob. Change Biol. 12, 489–499. 10.1111/j.1365-2486.2006.01102.x
Janssens I. A., Dieleman W., Luyssaert S., Subke J.-A., Reichstein M., Ceulemans R., et al. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322. 10.1038/ngeo844
Jenkinson D. S., Brookes P. C., Powlson D. S., (2004). Measuring soil microbial biomass. Soil Biol. Biochem. 36, 5–7. 10.1016/j.soilbio.2003.10.002
Joergensen R. G., Mueller T., (1996). The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value. Soil Biol. Biochem. 28, 33–37. 10.1016/0038-0717(95)00102-6
Krause K., Cherubini P., Bugmann H., Schleppi P., (2012). Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Tree Physiol. 32, 1471–1481. 10.1093/treephys/tps10923135740
Krause K., Niklaus P. A., Schleppi P., (2013). Soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O in a mountain spruce forest subjected to long-term N addition and to tree girdling. Agric. For. Meteorol. 181, 61–68. 10.1016/j.agrformet.2013.07.007
Leff J. W., Jones S. E., Prober S. M., Barberán A., Borer E. T., Firn J. L., et al. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. U. S. A. 112, 10967–10972. 10.1073/pnas.150838211226283343
Li W., Jin C., Guan D., Wang Q., Wang A., Yuan F., et al. (2015). The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biol. Biochem. 82, 112–118. 10.1016/j.soilbio.2015.01.001
Liu X., Yang Z., Lin C., Giardina C. P., Xiong D., Lin W., et al. (2017). Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation? Agric. For. Meteorol. 246, 78–85. 10.1016/j.agrformet.2017.06.010
Llado S., Lopez-Mondejar R., Baldrian P., (2017). Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, e00063–e00016. 10.1128/MMBR.00063-1628404790
Love M. I., Huber W., Anders S., (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-825516281
Maaroufi N. I., Nordin A., Hasselquist N. J., Bach L. H., Palmqvist K., Gundale M. J., (2015). Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob. Change Biol. 21, 3169–3180. 10.1111/gcb.1290425711504
Maaroufi N. I., Nordin A., Palmqvist K., Hasselquist N. J., Forsmark B., Rosenstock N. P., et al. (2019). Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Glob. Change Biol. 25, 2900–2914. 10.1111/gcb.1472231166650
McMurdie P. J., Holmes S., (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. 10.1371/journal.pone.006121723630581
Mellert K. H., Göttlein A., (2012). Comparison of new foliar nutrient thresholds derived from van den Burg's literature compilation with established central European references. Euro. J. For. Res. 131, 1461–1472. 10.1007/s10342-012-0615-8
Mohn J., Schürmann A., Hagedorn F., Schleppi P., Bachofen R., (2000). Increased rates of denitrification in nitrogen-treated forest soils. For. Ecol. Manag. 137, 113–119. 10.1016/S0378-1127(99)00320-5
Moldan F., Wright R. F., (2011). Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gårdsjön, Sweden (NITREX). Environ. Pollut. 159, 431–440. 10.1016/j.envpol.2010.10.02521074916
Mooshammer M., Wanek W., Hämmerle I., Fuchslueger L., Hofhansl F., Knoltsch A., et al. (2014). Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil N cycling. Nat. Commun. 5:3694. 10.1038/ncomms469424739236
Morier I., Schleppi P., Saurer M., Providoli I., Guenat C., (2010). Retention and hydrolysable fraction of atmospherically deposited nitrogen in two contrasting forest soils in Switzerland. Eur. J. Soil Sci. 61, 197–206. 10.1111/j.1365-2389.2010.01226.x
Morrison E. W., Frey S. D., Sadowsky J. J., van Diepen L. T., Thomas W. K., Pringle A., (2016). Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 23, 48–57. 10.1016/j.funeco.2016.05.011
Nadelhoffer K. J., Emmett B. A., Gundersen P., Kjønaas O. J., Koopmans C. J., Schleppi P., et al. (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148. 10.1038/18205
Nguyen N. H., Song Z. W., Bates S. T., Branco S., Tedersoo L., Menke J., et al. (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. 10.1016/j.funeco.2015.06.006
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2017). Vegan: Community Ecology Package. R Package Version 2.4–4. Available online at: http://CRAN.Rproject.org/package=vegan
Ostonen I., Püttsepp Ü., Biel C., Alberton O., Bakker M. R., Lõhmus K., et al. (2007). Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442. 10.1080/11263500701626069
Peng Y., Chen G. S., Chen G. T., Li S., Peng T. C., Qiu X. R., et al. (2017). Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem. Sci. Rep. 7:2783. 10.1038/s41598-017-03044-w28584271
Providoli I., Bugmann H., Siegwolf R., Buchmann N., Schleppi P., (2006). Pathways and dynamics of 15NO3- and 15NH4+ applied in a mountain Picea abies forest and in a nearby meadow in central Switzerland. Soil Biol. Biochem. 38, 1645–1657. 10.1016/j.soilbio.2005.11.019
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. 10.1093/nar/gks121923193283
R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ramirez K. S., Craine J. M., Fierer N., (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927. 10.1111/j.1365-2486.2012.02639.x
Rime T., Hartmann M., Frey B., (2016). Potential sources of microbial colonizers in initial soil ecosystem after retreat of an Alpine glacier. ISME J. 10, 1625–1641. 10.1038/ismej.2015.23826771926
Robertson G. P., Wedin D., Groffmann P. M., Blair J. M., Holland E. A., Nadelhoffer K. J., et al. (1999). “Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification, and soil respiration potentials,” in Standard Soil Methods for Long-Term Ecological Research, eds P. Robertson, D. C. Coleman, C. Bledsoe, and P. Sollins (New York, NY: Oxford University Press), 258–271.
Rousk J., Bååth E., Brookes P. C., Lauber C. L., Lozupone C., Caporaso J. G., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351. 10.1038/ismej.2010.58
Saiya-Cork K. R., Sinsabaugh R. L., Zak D. R., (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315. 10.1016/S0038-0717(02)00074-3
Schleppi P., Curtaz F., Krause K., (2017). Nitrate leaching from a sub-alpine coniferous forest subjected to experimentally increased N deposition for 20 years, and effects of tree girdling and felling. Biogeochemistry 134, 319–335. 10.1007/s10533-017-0364-3
Schleppi P., Hagedorn F., Providoli I., (2004). Nitrate leaching from a mountain forest ecosystem with Gleysols subjected to experimentally increased N deposition. Water Air Soil Pollut. Focus 4, 453–467. 10.1023/B:WAFO.0000028371.72044.fb
Schleppi P., Muller N., Feyen H., Papritz A., Bucher J., Flühler H., (1998). Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland. For Ecol. Manag. 101, 177–185. 10.1016/S0378-1127(97)00134-5
Schmitz A., Sanders T., Bolte A., Bussotti F., Dirnböck T., Johnson J., et al. (2019). Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Poll. 244, 980–994. 10.1016/j.envpol.2018.09.10130469293
Shen J., Zhang L. M., Guo J. F., Ray J. L., He J. Z., (2010). Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in northeast China. Appl. Soil Ecol. 46, 119–124. 10.1016/j.apsoil.2010.06.015
Simpson D., Andersson C., Christensen J. H., Engardt M., Geels C., Nyiri A., et al. (2014). Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study. Atmos. Chem. Phys. 14, 6995–7017. 10.5194/acp-14-6995-2014
Sims S. E., Hendricks J. J., Mitchell R. J., Kuehn K. A., Pecot S. D., (2007). Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Mycorrhiza 17, 299–309. 10.1007/s00572-007-0105-x
Sinsabaugh R. L., Carreiro M. M., Repert D. A., (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60, 1–24. 10.1023/A:1016541114786
Solberg S., Dobbertin M., Reinds G. J., Lange H., Andreassen K., Garcia Fernandez P., et al. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For. Ecol. Manag. 258, 1735–1750. 10.1016/j.foreco.2008.09.057
Thomas Q. R., Canham C. D., Weathers K. C., Goodale C. L., (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17. 10.1038/ngeo721
Treseder K. K., (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355. 10.1111/j.1469-8137.2004.01159.x
Treseder K. K., (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120. 10.1111/j.1461-0248.2008.01230.x18673384
Turlapati S. A., Minocha R., Bhiravarasa P. S., Tisa L. S., Thomas W. K., Minocha S. C., (2013). Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol. Ecol. 83, 478–493. 10.1111/1574-6941.1200922974374
Uroz S., Buée M., Deveau A., Mieszkin S., Martin F., (2016). Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol. Biochem. 103, 471–488. 10.1016/j.soilbio.2016.09.006
van der Linde S., Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248. 10.1038/s41586-018-0189-929875410
Vance E. D., Brookes P. C., Jenkinson D. S., (1987). An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. 10.1016/0038-0717(87)90052-6
Vos M., Wolf A. B., Jennings S. J., Kowalchuk G. A., (2013). Microscale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954. 10.1111/1574-6976.1202323550883
Wallenstein M. D., McNulty S., Fernandez I. J., Boggs J., Schlesinger W. H., (2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For. Ecol. Manag. 222, 459–468. 10.1016/j.foreco.2005.11.002
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R., (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. 10.1128/AEM.00062-0717586664
Weber C. F., Vilgalys R., Kuske C. R., (2013). Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon. Front. Microbiol. 4:78. 10.3389/fmicb.2013.0007823641237
Xu G.-L., Schleppi P., Li M.-H., Fu S.-L., (2009). Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environ. Pollut. 157, 2030–2036. 10.1016/j.envpol.2009.02.02619303182
Yamada T., Sekiguchi Y., (2009). Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi “subphylum I” with natural and biotechnological relevance. Microbes Environ. 24, 205–216. 10.1264/jsme2.me09151s21566375
Zechmeister-Boltenstern S., Keiblinger K. M., Mooshammer M., Peñuelas J., Richter A., Sardans J., et al. (2015). The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 85, 133–155. 10.1890/14-0777.1
Zhang H., Liu Y., Zhou Z., Zhang Y., (2019). Inorganic nitrogen addition affects soil respiration and belowground organic carbon fraction for a Pinus tabuliformis forest. Forests 10:369. 10.3390/f10050369
Zhou Z., Wang C., Zheng M., Jiang L., Luo Y., (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433–441. 10.1016/j.soilbio.2017.09.015