The impact of an ultra-trail on the dynamic of cardiac, inflammatory, renal and oxidative stress biological markers correlated with electrocardiogram and echocardiogram
LE GOFF, Caroline; Kaux, Jean-François; DULGHERU, Raluca Elenaet al.
Ultratrail; endurance; cardiac; inflammation and oxidative stress biomarkers; electrocardiogram; echocardiogram
Abstract :
[en] The aim of this study was to describe the effects of a 64.2 km ultra-trail on the biomarkers of
muscle damage, inflammation and oxidative stress, and compare the results observed with an
ECG and an echocardiogram, both performed before and after the race.
Thirty-three ultra-trail volunteers (45.8 ± 8.7 years old) were enrolled in our study. Three blood
tests were drawn from each runner, one just before (TPRE), one just after (TPOST) and the last
3 h after the end of the race (TPOST3h).
All the markers increased. The maximum concentrations observed were at TPOST3h and were
significant (p<0.001) for creatine kinase, creatine kinase isoform MB, high-sensitivity C-reactive
protein, uric acid and for the ratio of reduced glutathione to oxidised glutathione. However, in
the case of myoglobin, high-sensitive troponin T, N-terminal pro-brain natriuretic peptide, oxidised
glutathione, myeloperoxidase, cystatin C and creatinine, the most significant increases
were at TPOST (p<0.001). Modifications were observed in the medical imaging using echocardiography
such as reduction of left ventricule end-sytolic and diastolic volumes and left ventricular
global longitudinal strain. ECG showed electrical criteria for left ventricular hypertrophy and
incomplete right bundle branch block after the race.
Endurance races cause significant physiological stress to the body that can be measured by the
increase of different biomarkers. From a laboratory perspective, it is important to take into
account the possible exercise performed previous to the testing to avoid a misinterpretation of
the results. From a training perspective, due to these increases in biomarkers, it is recommended
that runners wait at least 72 h after an ultra-trail before subsequent training. In addition a transient
impairment of ventricular function due to dehydration were observed.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
LE GOFF, Caroline ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire techniques séparatives et stress oxydant
Kaux, Jean-François ; Université de Liège - ULiège > Département des sciences de la motricité > Médecine physique, réadaptation et traumatologie du sport
DULGHERU, Raluca Elena ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Clinique des valvulopathies - Echocardiographies - Imagerie
SEIDEL, Laurence ; Centre Hospitalier Universitaire de Liège - CHU > Département de gestion des systèmes d'informations (GSI) > Secteur d'appui à la recherche clinique et biostatistique
PINCEMAIL, Joël ; Centre Hospitalier Universitaire de Liège - CHU > Département de chirurgie > Service de chirurgie cardio-vasculaire et thoracique
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
MELON, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de cardiologie
Language :
English
Title :
The impact of an ultra-trail on the dynamic of cardiac, inflammatory, renal and oxidative stress biological markers correlated with electrocardiogram and echocardiogram
Publication date :
September 2021
Journal title :
Acta Cardiologica
ISSN :
0001-5385
eISSN :
1784-973X
Publisher :
Association Royale des Sociétés Scientifiques Medicales Belges/Koninklijke Vereniging van de Belgische Medische Wetenschappelijke Genootschappen, Bruxelles, Belgium
Gresslien T, Agewall S., Troponin and exercise. Int J Cardiol. 2016; 221: 609–621. Available from: http://dx.doi.org/10.1016/j.ijcard.2016.06.243
Kupchak BR, Kraemer WJ, Hoffman MD, et al. The impact of an ultramarathon on hormonal and biochemical parameters in men. Wilderness Environ Med. 2014; 25 (3): 278–288.
Predel HG., Marathon run: cardiovascular adaptation and cardiovascular risk. Eur Heart J. 2014; 35 (44): 3091–3096.
Klinkenberg LJJ, Luyten P, van der Linden N, et al. Cardiac troponin T and I release after a 30-km run. Am J Cardiol. 2016; 118 (2): 281–287. [cited 2016 Jul 18]. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84973569762&partnerID=tZOtx3y1
Aengevaeren VL, Hopman MTE, Thompson PD, et al. Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation. 2019; 140 (10): 804–814.
Wagner GS, Macfarlane P, Wellens H, et al. AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the electrocardiogram: part VI: acute ischemia/infarction: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009; 53 (11): 1003–1011. Available from: http://dx.doi.org/10.1016/j.jacc.2008.12.016
Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston Marathon. Circulation. 2006; 114 (22): 2325–2333.
La Gerche A, Roberts T, Claessen G., The response of the pulmonary circulation and right ventricle to exercise: Exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 grover conference series). Pulm Circ. 2014; 4 (3): 407–416.
Siegel AJ, Januzzi J, Sluss P, et al. Cardiac biomarkers, electrolytes, and other analytes in collapsed marathon runners. Am J Clin Pathol. 2008; 129 (6): 948–951. Available from: https://academic.oup.com/ajcp/article-lookup/doi/10.1309/4L0M60MGAQBCHMV7
Eijsvogels TMH, Hoogerwerf MD, Maessen MFH, et al. Predictors of cardiac troponin release after a marathon. J Sci Med Sport. 2015; 18 (1): 88–92. Available from: http://dx.doi.org/10.1016/j.jsams.2013.12.002
Khodaee M, Spittler J, Vanbaak K, et al. Effects of running an ultramarathon on cardiac. Int J Sports Med. 2015; 36 (11): 867–871.
Ho Yoon J, Yongbum P, Jaeki AHN, et al. Changes in the markers of cardiac damage in men following long-distance and ultra long-distance running races. J Sport Med Physi Fit. 2016; 56 (March): 295–301.
Ohba H, Takada H, Musha H, et al. Effects of prolonged strenuous exercise on plasma levels of atrial natriuretic peptide and brain natriuretic peptide in healthy men. Am Heart J. 2001; 141 (5): 751–758. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002870301337778
Shave R, Baggish A, George K, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010; 56 (3): 169–176. Available from: http://dx.doi.org/10.1016/j.jacc.2010.03.037
Eijsvogels T, George K, Shave R, et al. Effect of prolonged walking on cardiac troponin levels. AJC. 2010; 105 (2): 267–272.
Savukoski T, Mehtälä L, Lindahl B, et al. Elevation of cardiac troponins measured after recreational resistance training. Clin Biochem. 2015; 48 (12): 803–806.
Herrmann M, Scharhag J, Miclea M, et al. Post-race kinetics of cardiac troponin T and I and N-terminal pro-brain natriuretic peptide in marathon. Clin Chem. 2003; 49 (5): 831–834.
Scharhag J, Urhausen A, Schneider G, et al. Reproducibility and clinical significance of exercise-induced increases in cardiac troponins and N-terminal pro brain natriuretic peptide in endurance athletes. Eur J Cardiovasc Prev Rehabil. 2006; 13 (3): 388–397. Available from: http://cpr.sagepub.com/lookup/doi/10.1097/01.hjr.0000219117.33038.90
Legaz-Arrese A, López-Laval I, George K, et al. Impact of an endurance training program on exercise-induced cardiac biomarker release. Am J Physiol - Hear Circ Physiol. 2015; 308 (8): H913–H920. Available from: http://ajpheart.physiology.org/lookup/doi/10.1152/ajpheart.00914.2014
Shave R, Oxborough D., Exercise-induced cardiac injury: evidence from novel imaging techniques and highly sensitive cardiac troponin assays. Prog Cardiovasc Dis. 2012; 54 (5): 407–415. Available from: http://dx.doi.org/10.1016/j.pcad.2012.01.007
Tanabe K, Yamamoto A, Suzuki N, et al. Peptide and brain natriuretic peptide concentrations. Jpn Circ J. 1999; 63 (6): 447–452.
Clarkson PM., Exertional rhabdomyolysis and acute renal failure in marathon runners. Sports Med. 2007; 37 (4-5): 361–363.
Brancaccio P, Maffulli N, Limongelli FM., Creatine kinase monitoring in sport medicine. Br Med Bull. 2007; 81–82 (1): 209–230.
Magrini D, Khodaee M, San-Millán I, et al. Serum creatine kinase elevations in ultramarathon runners at high altitude. Phys Sportsmed. 2017; 45 (2): 129–133.
Banfi G, Colombini A, Lombardi G, et al. Metabolic markers in sports medicine. Adv Clin Chem. 2012; 56: 1–54.
Shin K, Park KD, Ahn J, et al. Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running. Medicine (Baltimore). 2016; 95 (20): e3657. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00005792-201605170-00030
Fallon KE, Sivyer G, Sivyer K, et al. The biochemistry of runners in a 1600 km ultramarathon. Br J Sports Med. 1999; 33 (4): 264–269.
Gergelé L, Bohe J, Feasson L, et al. Du sport extrême à la réanimation. Reanimation. 2010; 19 (5): 416–422.
Saugy J, Place N, Millet GY, et al. Alterations of neuromuscular function after the world’s most challenging mountain ultra-marathon. PLoS One. 2013; 8 (6): e65596.
Noakes TD., Effect of exercise on serum enzyme activities in humans. Sport Med an Int J Appl Med Sci Sport Exerc. 1987; 4 (4): 245–267.
Finaud J, Lac G, Filaire E., Oxidative stress: relationship with exercise and training. Sports Med. 2006; 36 (4): 327–358. Available from: http://link.springer.com/10.1007/s00421-011-2135-5
Quindry J, Dumke C, Slivka D, et al. Impact of extreme exercise at high altitude on oxidative stress in humans. J Physiol (Lond). 2016; 594 (18): 5093–5104.
Li F, Nie J, Lu Y, et al. The impact of intermittent exercise in a hypoxic environment on redox status and cardiac troponin release in the serum of well - trained marathon runners. Eur J Appl Physiol. 2016; 116 (10): 2045–2051.
Hessel E, Haberland A, Muller M, et al. Oxygen radical generation of neutrophils : a reason for oxidative stress during marathon running ? CCA. 2000; 298 (1–2): 145–156.
Suzuki K, Nakaji S, Yamada M, et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc. 2003; 35 (2): 348–355.
Holtzhausen L-M, Noakes TD., The prevalence and significance of post-exercise(postural) hypotension in ultramarathon runners. Med Sci Sports Exer. 1995; 27 (12): 1595–1601.
Kao W, Shyu C, Yang X, et al. Athletic performance and serial weight changes during 12- and 24-hour ultra-marathons. Clin J Sport Med. 2008; 18 (2): 155–158.
Newmark SR, Toppo FR, Adams G., Fluid and electrolyte replacement in the ultramarathon runner. Am J Sports Med. 1991; 19 (4): 389–391.
Armstrong LE., Assessing hydration status: the elusive gold standard. J Am Coll Nutr. 2007; 26 (5 Suppl): 575S–584S.
Hoffman MD, Pasternak A, Rogers IR, et al. Medical services at ultra-endurance foot races in remote environments: medical issues and consensus guidelines. Sports Med. 2014; 44 (8): 1055–1069.
Lipman GS, Krabak BJ, Rundell SD, et al. Incidence and prevalence of acute kidney injury during multistage ultramarathons. Clin J Sport Med. 2016; 26 (4): 314–319.
Lipman GS, Shea K, Christensen M, et al. Ibuprofen versus placebo effect on acute kidney injury in ultramarathons : a randomised controlled trial. Emerg Med J. 2017; 34 (10): 637–642.
Boulter J, Noakes TD, Hew-Butler T., Acute renal failure in four Comrades Marathon runners ingesting the same electrolyte supplement : coincidence or causation ? S Afr Med J. 2011; 101 (12): 876–878.
Schiff HB, McSearraigh ETM, Kallmeyer JC, et al. Myoglobinuria, rhabdomyolysis and marathon running. Q J Med. 1978; 47 (188): 463–472.
Knechtle B, Nikolaidis PT., Physiology and pathophysiology in ultra-marathon running. Front Physiol. 2018; 9 (JUN): 1–33.
Urheim S, Edvardsen T, Torp H, et al. Myocardial strain by doppler echocardiography validation of a new method to quantify regional myocardial function. Circulation. 2000; 102 (10): 1158–1164.
Brown J, Jenkins C, Marwick TH., Use of myocardial strain to assess global left ventricular function : A comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J. 2009; 157 (1): 102.e1–102.e5.