Article (Scientific journals)
Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19.
GUIOT, Julien; Vaidyanathan, Akshayaa; DEPREZ, Louis et al.
2021In Diagnostics, 11 (1)
Peer reviewed
 

Files


Full Text
Guiot_diagnostics_2021_11_41.pdf
Publisher postprint (5.6 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
COVID-19; artificial intelligence; computed tomography; machine learning; radiomics
Abstract :
The coronavirus disease 2019 (COVID-19) outbreak has reached pandemic status. Drastic measures of social distancing are enforced in society and healthcare systems are being pushed to and beyond their limits. To help in the fight against this threat on human health, a fully automated AI framework was developed to extract radiomics features from volumetric chest computed tomography (CT) exams. The detection model was developed on a dataset of 1381 patients (181 COVID-19 patients plus 1200 non COVID control patients). A second, independent dataset of 197 RT-PCR confirmed COVID-19 patients and 500 control patients was used to assess the performance of the model. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). The model had an AUC of 0.882 (95% CI: 0.851-0.913) in the independent test dataset (641 patients). The optimal decision threshold, considering the cost of false negatives twice as high as the cost of false positives, resulted in an accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive value (NPV) of 94.46% and a positive predictive value (PPV) of 59.44%. Benchmarked against RT-PCR confirmed cases of COVID-19, our AI framework can accurately differentiate COVID-19 from routine clinical conditions in a fully automated fashion. Thus, providing rapid accurate diagnosis in patients suspected of COVID-19 infection, facilitating the timely implementation of isolation procedures and early intervention.
Disciplines :
General & internal medicine
Radiology, nuclear medicine & imaging
Immunology & infectious disease
Author, co-author :
GUIOT, Julien  ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
Vaidyanathan, Akshayaa
DEPREZ, Louis  ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de radiodiagnostic
Zerka, Fadila
Danthine, Denis  ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de médecine nucléaire et imagerie onco
Frix, Anne-Noëlle ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
THYS, Marie ;  Centre Hospitalier Universitaire de Liège - CHU > Département de gestion des systèmes d'informations (GSI) > Secteur exploitation des données
HENKET, Monique ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Clinique de l'asthme
CANIVET, Grégory ;  Centre Hospitalier Universitaire de Liège - CHU > Département de gestion des systèmes d'informations (GSI) > SAI - Secteur app. médical
Mathieu, Stéphane ;  Centre Hospitalier Universitaire de Liège - CHU > Département de gestion des systèmes d'informations (GSI) > SAI - Secteur app. administratif
EFTAXIA, Evanthia ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de radiodiagnostic
Lambin, Philippe
Tsoutzidis, Nathan
Miraglio, Benjamin
Walsh, Sean
Moutschen, Michel  ;  Université de Liège - ULiège > Département des sciences cliniques > Immunopath. - Maladies infect. et médec. interne gén.
Louis, Renaud ;  Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Meunier, Paul ;  Université de Liège - ULiège > Département des sciences cliniques > Imagerie abdominale
Vos, Wim
Leijenaar, Ralph T. H.
LOVINFOSSE, Pierre ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de médecine nucléaire et imagerie onco
More authors (11 more) Less
Language :
English
Title :
Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19.
Publication date :
2021
Journal title :
Diagnostics
eISSN :
2075-4418
Volume :
11
Issue :
1
Peer reviewed :
Peer reviewed
Available on ORBi :
since 06 February 2021

Statistics


Number of views
313 (58 by ULiège)
Number of downloads
155 (23 by ULiège)

Scopus citations®
 
36
Scopus citations®
without self-citations
25
OpenCitations
 
30
OpenAlex citations
 
50

Bibliography


Similar publications



Contact ORBi