[en] Cannabis sp. and Euphorbia sp. are potential candidates as indoor culture for the
extraction of their high value-added metabolites for pharmaceutical applications. Both
residual lignocellulosic materials recovered after extraction are studied in the present
article as single or mixed feedstocks for a closed-loop bioprocesses cascade. An alkaline
process (NaOH 3%, 30min 160◦C) is performed to separate the studied biomasses
into their main components: lignin and cellulose. Results highlight the advantages of
the multi-feedstocks approach over the single biomass in term of lignin yield and
purity. Since the structural characteristics of lignin affect the potential applications, a
particular attention is drawn on the comprehension of lignin structure alteration and
the possible interaction between them during single or mixed feedstocks treatment.
FTIR and 2D-NMR spectra revealed similar profiles in term of chemical functions and
structure rather than novel chemical bonds formation inexistent in the original biomasses.
In addition, thermal properties and molecular mass distribution are conserved whether
hemp or euphorbia are single treated or in combination. A second treatment was applied
to investigate the effect of prolonged treatment on extracted lignins and the possible
interactions. Aggregation, resulting in higher molecular mass, is observed whatever the
feedstocks combination. However,mixing biomass does not affect chemical structures of
the end product. Therefore, our paper suggests the possibility of gathering lignocellulosic
residues during alkali process for lignin extraction and valorization, allowing to forecast
lignin structure and make assumptions regarding potential valorization pathway.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Berchem, Thomas ; Université de Liège - ULiège > Département GxABT > SMARTECH
Schmetz, Quentin ; Université de Liège - ULiège > Département GxABT > SMARTECH
Lepage, Thibaut ; Université de Liège - ULiège > Département GxABT > SMARTECH
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > SMARTECH
Language :
English
Title :
Single and mixed feedstocks biorefining: comparison of primary metabolites recovery and lignin recombination during an alkaline process
Abbasi T., Abbasi S. A., (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 14, 919–937. 10.1016/j.rser.2009.11.006ID Not Found
Althuri A., Gujjala L. K. S., Banerjee R., (2017). Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresour. Technol. 245, 530–539. 10.1016/j.biortech.2017.08.14028898853
Ashraf M. T., Schmidt J. E., (2018). Process simulation and economic assessment of hydrothermal pretreatment and enzymatic hydrolysis of multi-feedstock lignocellulose - separate vs combined processing. Bioresour. Technol. 249, 835–843. 10.1016/j.biortech.2017.10.08829136939
Behera B. K., Midha N., Arora M., Sharma D. K., (1995). Production of petroleum hydrocarbons, fermentable sugars and ethanol from tabernaemontana div aricata: a new fuel crop and renewable resource of energy. Energy Convers. Manag. 36, 281–288. 10.1016/0196-8904(94)00055-5
Bolton G., LaCasse D., Kuriyel R., (2006). Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids. J. Memb. Sci. 277, 75–84. 10.1016/j.memsci.2004.12.053
Brazdausks P., Tupciauskas R., Andzs M., Rizhikovs J., Puke M., Paze A., et al. (2015). Preliminary study of the biorefinery concept to obtain furfural and binder-less panels from hemp (Cannabis Sativa L.) shives. Energy Procedia 72, 34–41. 10.1016/j.egypro.2015.06.006
Carvajal J. C., Gómez Á., Cardona C. A., (2016). Comparison of lignin extraction processes: economic and environmental assessment. Bioresour. Technol. 214, 468–476. 10.1016/j.biortech.2016.04.10327174614
Casas A., Oliet M., Alonso M. V., Rodríguez F., (2012). Dissolution of pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization. Sep. Purif. Technol. 97, 115–122. 10.1016/j.seppur.2011.12.03223399242
Chakar F. S., Ragauskas A. J., (2004). Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141. 10.1016/j.indcrop.2004.04.016
Chen H., Liu J., Chang X., Chen D., Xue Y., Liu P., et al. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206. 10.1016/j.fuproc.2016.12.007
Chen Y., Stevens M. A., Zhu Y., Holmes J., Xu H., (2013). Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol. Biofuels. 6:8. 10.1186/1754-6834-6-823356733
Das L., Liu E., Saeed A., Williams D. W., Hu H., Li C., et al. (2017). Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour. Technol. 244, 641–649. 10.1016/j.biortech.2017.08.00828810219
Del Río J. C., Prinsen P., Rencoret J., Nieto L., Jiménez-Barbero J., Ralph J., et al. (2012). Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J. Agric. Food Chem. 60, 3619–3634. 10.1021/jf300099g22414389
Demirbas A., (2017). Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses. Energy Sources A Recover. Util. Environ. Eff. 39, 592–598. 10.1080/15567036.2016.1248798
Domínguez-Robles J., Sánchez R., Díaz-Carrasco P., Espinosa E., García-Domínguez M. T., Rodríguez A., (2017). Isolation and characterization of lignins from wheat straw: application as binder in lithium batteries. Int. J. Biol. Macromol. 104, 909–918. 10.1016/j.ijbiomac.2017.07.01528687383
Dragone G., Kerssemakers A. A. J., Driessen J. L. S. P., Yamakawa C. K., Brumano L. P., Mussatto S. I., (2020). Innovation and strategic orientations for the development of advanced biorefineries. Bioresour. Technol. 302:122847. 10.1016/j.biortech.2020.12284732008863
Finch K. B. H., Richards R. M., Richel A., Medvedovici A. V., Gheorghe N. G., Verziu M., et al. (2012). Catalytic hydroprocessing of lignin under thermal and ultrasound conditions. Catal. Today 196, 3–10. 10.1016/j.cattod.2012.02.051
Gandolfi S., Pistone L., Ottolina G., Xu P., Riva S., (2015). Hemp hurds biorefining: a path to green L-(+)-lactic acid production. Bioresour. Technol. 191, 59–65. 10.1016/j.biortech.2015.04.11825983223
Gordobil O., Moriana R., Zhang L., Labidi J., Sevastyanova O., (2016). Assesment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Ind. Crops Prod. 83, 155–165. 10.1016/j.indcrop.2015.12.048
Hames B., Scarlata C., Sluiter A., (2008). Determination of Protein Content in Biomass. Laboratory Analytical Procedure (LAP). Report No.TP-510-42625. National Renewable Energy Laboratory. 1–8.
Hayes D. J., (2009). An examination of biorefining processes, catalysts and challenges. Catal. Today 145, 138–151. 10.1016/j.cattod.2008.04.017
Heo J. B., Lee Y. S., Chung C. H., (2019). Raw plant-based biorefinery: a new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnol. Adv. 37:107422. 10.1016/j.biotechadv.2019.10742231398398
Jiang B., Zhang Y., Guo T., Zhao H., Jin Y., (2018). Structural characterization of lignin and lignin-carbohydrate complex (LCC) from ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers (Basel). 10:736. 10.3390/polym1007073630960661
Jiang G., Nowakowski D. J., Bridgwater A. V., (2010). A systematic study of the kinetics of lignin pyrolysis. Thermochim. Acta 498, 61–66. 10.1016/j.tca.2009.10.003
Jin J., Dupré C., Yoneda K., Watanabe M. M., Legrand J., Grizeau D., (2016). Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: recent advances and opportunities. Process Biochem. 51, 1866–1875. 10.1016/j.procbio.2015.11.026
Kalita D., (2008). Hydrocarbon plant-New source of energy for future. Renew. Sustain. Energy Rev. 12, 455–471. 10.1016/j.rser.2006.07.008
Kang S., Xiao L., Meng L., Zhang X., Sun R., (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. Int. J. Mol. Sci. 13, 15209–15226. 10.3390/ijms13111520923203120
Kim H., Ralph J., (2014). A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters. RSC Adv. 4, 7549–7560. 10.1039/C3RA46338A
Kim J. S., Lee Y. Y., Kim T. H., (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48. 10.1016/j.biortech.2015.08.08526341010
Kim K. H., Kim C. S., (2018). Recent efforts to prevent undesirable reactions from fractionation to depolymerization of lignin: toward maximizing the value from lignin. Front. Energy Res. 6, 1–7. 10.3389/fenrg.2018.00092
Knill C. J., Kennedy J. F., (2002). Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 51, 281–300. 10.1016/S0144-8617(02)00183-2
Kozliak E. I., Kubátová A., Artemyeva A. A., Nagel E., Zhang C., Rajappagowda R. B., et al. (2016). Thermal liquefaction of lignin to aromatics: efficiency, selectivity, and product analysis. ACS Sustain. Chem. Eng. 4, 5106–5122. 10.1021/acssuschemeng.6b01046
Kuglarz M., Alvarado-Morales M., Karakashev D., Angelidaki I., (2016). Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour. Technol. 200, 639–647. 10.1016/j.biortech.2015.10.08126551652
Kunz W., Häckl K., (2016). The hype with ionic liquids as solvents. Chem. Phys. Lett. 661, 6–12. 10.1016/j.cplett.2016.07.044
Li S. Y., Ng I. S., Chen P. T., Chiang C. J., Chao Y. P., (2018). Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnol. Biofuels 11, 1–15. 10.1186/s13068-018-1234-530250508
Liitiä T. M., Maunu S. L., Hortling B., Toikka M., Kilpeläinen I., (2003). Analysis of technical lignins by two- and three-dimensional NMR spectroscopy. J. Agric. Food Chem. 51, 2136–2143. 10.1021/jf020434912670147
Manara P., Zabaniotou A., Vanderghem C., Richel A., (2014). Lignin extraction from mediterranean agro-wastes: impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catal. Today 223, 25–34. 10.1016/j.cattod.2013.10.065
Michelin M., Teixeira J. A., (2016). Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour. Technol. 216, 862–869. 10.1016/j.biortech.2016.06.01827318165
Miles-Barrett D. M., Neal A. R., Hand C., Montgomery J. R. D., Panovic I., Ojo O. S., et al. (2016). The synthesis and analysis of lignin-bound hibbert ketone structures in technical lignins. Org. Biomol. Chem. 14, 10023–10030. 10.1039/C6OB01915C27725988
Moustaqim M., El K. A., El Marouani M., El Men-La-Yakhaf S., Taibi M., Sebbahi S., et al. (2018). Thermal and thermomechanical analyses of lignin. Sustain. Chem. Pharm. 9, 63–68. 10.1016/j.scp.2018.06.002
Narapakdeesakul D., Sridach W., Wittaya T., (2013) Recovery, characteristics potential use as linerboard coatings material of lignin from oil palm empty fruit bunches' black liquor. Ind. Crops Prod. 50, 8–14. 10.1016/j.indcrop.2013.07.011
Nielsen F., Galbe M., Zacchi G., Wallberg O., (2019). The effect of mixed agricultural feedstocks on steam pretreatment, enzymatic hydrolysis, and cofermentation in the lignocellulose-to-ethanol process. Biomass Convers. Biorefinery. 10.1007/s13399-019-00454-w
Norman A., Jenkins S., (1934). The determination of lignin. II. Errors introduced by the presence of proteins. Biochem. J. 28, 2160–2168. 10.1042/bj0282160
Oke M. A., Annuar M. S. M., Simarani K., (2016). Mixed feedstock approach to lignocellulosic ethanol production-prospects and limitations. Bioenergy Res. 9, 1189–1203. 10.1007/s12155-016-9765-8
Qu L., Chen J. B., Zhang G. J., Sun S. Q., Zheng J., (2017). Chemical profiling and adulteration screening of aquilariae lignum resinatum by fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 177–182. 10.1016/j.saa.2016.11.00827907866
Richel A., Vanderghem C., Simon M., Wathelet B., Paquot M., (2012). Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis. Anal. Chem. Insights 7, 79–89. 10.4137/ACI.S1079923300342
Ronda A., Pérez A., Iañez I., Blázquez G., Calero M., (2017). A novel methodology to characterize and to valorize a waste by a fractionation technology. Process Saf. Environ. Prot. 109, 140–150. 10.1016/j.psep.2017.03.037
Rossberg C., Bremer M., Machill S., Koenig S., Kerns G., Boeriu C., et al. (2015). Separation and characterisation of sulphur-free lignin from different agricultural residues. Ind. Crops Prod. 73, 81–89. 10.1016/j.indcrop.2015.04.001
Rößiger B., Unkelbach G., Pufky-Heinrich D., (2018). Base-catalyzed depolymerization of lignin: history, challenges and perspectives, in Lignin: Trends and Applications, ed. M. Poletto. (Rijeka: IntechOpen), 99–12110.5772/intechopen.72964
Sammons R. J., Harper D. P., Labbé N., Bozell J. J., Elder T., Rials T. G., (2013). Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources 8, 2752–2767. 10.15376/biores.8.2.2752-2767
Sanchez O., Sierra R., Alméciga-Diaz C. J., (2011). Delignification process of agro-industrial wastes an alternative to obtain fermentable carbohydrates for producing fuel, in Alternative Fuel. ed M. Manzanera (Rijeka: IntechOpen) 111–155. 10.5772/22381
Sari Y. W., Syafitri U., Sanders J. P. M., Bruins M. E., (2015). How biomass composition determines protein extractability. Ind. Crops Prod. 70, 125–133. 10.1016/j.indcrop.2015.03.020
Schmetz Q., Maniet G., Jacquet N., Teramura H., Ogino C., Kondo A., et al. (2016). Comprehension of an organosolv process for lignin extraction on festuca arundinacea and monitoring of the cellulose degradation. Ind. Crops Prod. 94, 308–317. 10.1016/j.indcrop.2016.09.003
Schmetz Q., Teramura H., Morita K., Oshima T., Richel A., Ogino C., et al. (2019). Versatility of a dilute acid/butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, monosaccharides and cellulose in distinct phases. ACS Sustain. Chem. Eng. 7, 11069–11079. 10.1021/acssuschemeng.8b05841
Semhaoui I., Maugard T., Zarguili I., Rezzoug S. A., Zhao J. M. Q., Toyir J., et al. (2018). Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving enzymatic hydrolysis of hemp hurds. Bioresour. Technol. 257, 192–200. 10.1016/j.biortech.2018.02.10729501952
Shi J., George K. W., Sun N., He W., Li C., Stavila V., et al. (2015). Impact of pretreatment technologies on saccharification and isopentenol fermentation of mixed lignocellulosic feedstocks. Bioenergy Res. 8, 1004–1013. 10.1007/s12155-015-9588-z
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., et al. (2012). Determination of structural carbohydrates and lignin. Laboratory Analytical Procedure (LAP) Report No. TP-510-42618. National Renewable Energy Laboratory. 1–18.
Wang H., Chen W., Zhang X., Wei Y., Zhang A., Liu S., et al. (2018). Structural changes of bagasse dusring the homogeneous esterification with maleic anhydride in ionic liquid 1-Allyl-3-methylimidazolium chloride. Polymers (Basel). 10, 1–15. 10.3390/polym1004043330966468
Wang J., Shen B., Kang D., Yuan P., Wu C., (2019). Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA. Chem. Eng. Sci. 767–776. 10.1016/j.ces.2018.10.023
Wang R., Hanna M. A., Zhou W. W., Bhadury P. S., Chen Q., Song B. A., et al. (2011). Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour. Technol. 102, 1194–1199. 10.1016/j.biortech.2010.09.06620951029
Wawro A., Batog J., Gieparda W., (2019). Chemical and enzymatic treatment of hemp biomass for bioethanol production. Appl. Sci. 9, 1–11. 10.3390/app9245348
Wu J. Q., Wen J. L., Yuan T. Q., Sun R. C., (2015). Integrated hot-compressed water and laccase-mediator treatments of eucalyptus grandis fibers: structural changes of fiber and lignin. J. Agric. Food Chem. 63, 1763–1772. 10.1021/jf506042s25639522
Xiao B., Sun X. F., Sun R. C., (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. 74, 307–319. 10.1016/S0141-3910(01)00163-X
Yamakawa C. K., Qin F., Mussatto S. I., (2018). Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 119, 54–60. 10.1016/j.biombioe.2018.09.007
Yang H., Yan R., Chen H., Lee D. H., Zheng C., (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. 10.1016/j.fuel.2006.12.013
Yuan T. Q., Sun S. N., Xu F., Sun R. C., (2011). Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604–10614. 10.1021/jf203154921879769
Zakzeski J., Bruijnincx P. C. A., Jongerius A. L., Weckhuysen B. M., (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599. 10.1021/cr900354u20218547
Zhang H., Li H., Pan H., Wang A., Souzanchi S., Xu C., et al. (2018). Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl. Energy 223, 416–429. 10.1016/j.apenergy.2018.04.061
Zhao X., Cheng K., Liu D., (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82, 815–827. 10.1007/s00253-009-1883-119214499