Finite element modeling (FEM); Nanoindentation; Titanium alloy; Sensitivity analysis; LIMARC
Abstract :
[en] This paper focuses on the numerical modeling of nanoindentation tests. The first goal of this study is to collect essential material parameters and boundary conditions from the literature and to complete the data required to accurately model nanoindentation tests. The second goal of this study consists in validating the material parameters identified from macroscopic tensile tests of the body-centered cubic b phase of Ti-5553, a new generation of titanium alloy. This validation is performed looking at experimental and numerical
nanoindentation curves obtained for different grain orientations.
Disciplines :
Materials science & engineering
Author, co-author :
Gerday, Anne-Françoise ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Ben Bettaieb, Mohamed ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Département Argenco : Secteur MS2F
Duchene, Laurent ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Département Argenco : Secteur MS2F
Clément, N.
Diarra, Harona ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Département Argenco : Secteur MS2F
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Language :
English
Title :
Interests and limitations of nanoindentation for bulk multiphase material identification: Application to the β phase of Ti-5553
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ahn J.H., Jeon E.C., Choi Y., Lee Y.H., and Kwon D. Curr Appl Phys 2 (2002) 525-531
Xu Z.H., and Li X. Acta Mater 56 (2008) 1399-1405
Lilleodden E.T., and Nix W.D. Acta Mater 54 (2006) 1583-1593
Chen X., and Vlassak J.J. J Mater Res 16 (2001) 2979-2982
Pelletier H. Tribol Int 39 (2005) 593-606
Wang Y., Raabe D., Klüber C., and Roters F. Acta Mater 52 (2004) 2229-2238
Larsson P.L., Giannakopoulos A.E., Söderlund E., Rowcliffe D.J., and Vestergaard R. Int J Solids Struct 33 (1996) 221-248
Chen W., Li M., Zhang T., Cheng Y.T., and Cheng C.M. Mate Sci Eng A 445-446 (2007) 323-327
Doerner M.F., and Nix W.D. J Mater Res 1 (1986) 601-609
Oliver W.C., and Pharr G.M. J Mater Res 7 (1992) 1564-1583
Sasaki T., Yang M., Fukushima S., and Tsukano R. J Mater Process Tech 151 (2004) 263-267
Yan J., Karlsson A.M., and Chen X. Int J Solids Struct 44 (2007) 3720-3737
Liu Y., Wang B., Yoshino M., Roy S., Lu H., and Komanduri R. J Mech Phys Solids 53 (2005) 2718-2741
Mirshams R.A., and Pothapragada R.M. Acta Mater 54 (2006) 1123-1134
Pelletier H., Krier J., Cornet A., and Mille P. Thin Solid Films 379 (2000) 147-155
Zaafarani N., Raabe D., Singh R.N., Roters F., and Zaefferer S. Acta Mater 54 (2006) 1863-1876
Liu Y., Varghese S., Ma J., Yoshino M., Lu H., and Komanduri R. Int J Plast 24 (2008) 1990-2015
Farrissey L.M., and McHugh P.E. Mater Sci Eng A 399 (2005) 254-266
Alcala J., Casals O., and Ocenasek J. J Mech Phys Solids 56 (2008) 3277-3303
Bucaille J.L., Strauss S., Felder E., and Michler J. Acta Mater 51 (2003) 1663-1678
Bocciarelli M., Bolzon G., and Maier G. Mech Mater 37 (2005) 855-868
Tabor D. The hardness of metals (1951), Clarendon Press, Oxford
Kojima Y., Shima M., Motoda T., Jibiki T., and Sugawara T. Tribol Int 40 (2007) 1479-1483
Gouldstone A., Chollacoop N., Dao M., Li J., Minor A.M., and Shen Y.L. Acta Mater 55 (2007) 4015-4039
Dyduch M., Habraken A.M., and Cescotto S. Comput Method Appl Mech Eng 101 (1992) 283-298
Huang Y. Internal report (1991), Harvard University, Cambridge (MA)
Kysar J.W. J Mech Phys Solids 49 (2001) 1099-1128
Hutchinson J.W. Proc Roy Soc Lond A Math Phys Sci 348 (1976) 101-127
Bassani J.L., and Wu T. Proc Roy Soc Lond A Math Phys Sci 435 (1991) 21-41
Siddiq A., Schmauder S., and Huang Y. Int J Plast 23 (2007) 665-689
Gerday AF. Ph.D. thesis. University of Liège; 2009.
Gerday AF, Clement N, Jacques PJ, Pardoen T. Inverse modeling of nanoindentation tests to identify Ti-555 behavior. In: Proceedings of the Ti-2007 science and technology, Japan; 2007.
Marquardt D.W. SIAM J Appl Math 11 (1963) 431-440
Habraken A.M., and Cescotto S. Math Comput Model 28 (1998) 153-169
Gerday AF, Clement N, Jacques PJ, Pardoen T, Habraken AM. FE simulations of nanoindentation in beta metastable Ti. In: Proceedings of the ESAFORM 2006, Poland; 2006.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.