CD32; HIV cure; HIV latency; HIV persistence; HIV reservoir; CD32 antigen; Article; CD4+ T lymphocyte; DNA transcription; Human immunodeficiency virus infection
Darcis, Gilles ; Université de Liège - ULiège > I3-Cellular and Molecular Immunology
Kootstra, Neeltje A.; Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Hooibrink, Berend; Department of Cell Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
van Montfort, Thijs; Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Maurer, Irma; Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Groen, Kevin; Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Jurriaans, Suzanne; Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Bakker, Margreet; Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
van Lint, Carine; Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
Berkhout, Ben; Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Pasternak, Alexander O.; Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Language :
English
Title :
CD32+CD4+ T Cells Are Highly Enriched for HIV DNA and Can Support Transcriptional Latency
Publication date :
2020
Journal title :
Cell Reports
eISSN :
2211-1247
Publisher :
Elsevier B.V.
Volume :
30
Issue :
7
Pages :
2284-2296.e3
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Fonds Léon Fredericq NIH - National Institutes of Health NIAID - National Institute of Allergy and Infectious Diseases FRB - Fondation Roi Baudouin Rotary International
Abdel-Mohsen, M., Kuri-Cervantes, L., Grau-Exposito, J., Spivak, A.M., Nell, R.A., Tomescu, C., Vadrevu, S.K., Giron, L.B., Serra-Peinado, C., Genescà, M., et al. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci. Transl. Med., 10, 2018, eaar6759.
Avettand-Fènoël, V., Hocqueloux, L., Ghosn, J., Cheret, A., Frange, P., Melard, A., Viard, J.P., Rouzioux, C., Total HIV-1 DNA, a Marker of Viral Reservoir Dynamics with Clinical Implications. Clin. Microbiol. Rev. 29 (2016), 859–880.
Badia, R., Ballana, E., Castellví, M., García-Vidal, E., Pujantell, M., Clotet, B., Prado, J.G., Puig, J., Martínez, M.A., Riveira-Muñoz, E., Esté, J.A., CD32 expression is associated to T-cell activation and is not a marker of the HIV-1 reservoir. Nat. Commun., 9, 2018, 2739.
Banga, R., Procopio, F.A., Noto, A., Pollakis, G., Cavassini, M., Ohmiti, K., Corpataux, J.M., de Leval, L., Pantaleo, G., Perreau, M., PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat. Med. 22 (2016), 754–761.
Banga, R., Procopio, F.A., Ruggiero, A., Noto, A., Ohmiti, K., Cavassini, M., Corpataux, J.M., Paxton, W.A., Pollakis, G., Perreau, M., Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals. Front. Immunol., 9, 2018, 144.
Barton, K., Hiener, B., Winckelmann, A., Rasmussen, T.A., Shao, W., Byth, K., Lanfear, R., Solomon, A., McMahon, J., Harrington, S., et al. Broad activation of latent HIV-1 in vivo. Nat. Commun., 7, 2016, 12731.
Bertagnolli, L.N., White, J.A., Simonetti, F.R., Beg, S.A., Lai, J., Tomescu, C., Murray, A.J., Antar, A.A.R., Zhang, H., Margolick, J.B., et al. The role of CD32 during HIV-1 infection. Nature 561 (2018), E17–E19.
Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-van Dillen, P.M., van der Noordaa, J., Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28 (1990), 495–503.
Bruner, K.M., Wang, Z., Simonetti, F.R., Bender, A.M., Kwon, K.J., Sengupta, S., Fray, E.J., Beg, S.A., Antar, A.A.R., Jenike, K.M., et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 566 (2019), 120–125.
Buzon, M.J., Sun, H., Li, C., Shaw, A., Seiss, K., Ouyang, Z., Martin-Gayo, E., Leng, J., Henrich, T.J., Li, J.Z., et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med. 20 (2014), 139–142.
Chavez, L., Calvanese, V., Verdin, E., HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells. PLoS Pathog., 11, 2015, e1004955.
Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F.A., Yassine-Diab, B., Boucher, G., Boulassel, M.R., Ghattas, G., Brenchley, J.M., et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15 (2009), 893–900.
Chun, T.W., Finzi, D., Margolick, J., Chadwick, K., Schwartz, D., Siliciano, R.F., In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med. 1 (1995), 1284–1290.
Chun, T.W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J.A., Taylor, H., Hermankova, M., Chadwick, K., Margolick, J., Quinn, T.C., et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387 (1997), 183–188.
Chun, T.W., Davey, R.T. Jr., Ostrowski, M., Shawn Justement, J., Engel, D., Mullins, J.I., Fauci, A.S., Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat. Med. 6 (2000), 757–761.
Chun, T.W., Nickle, D.C., Justement, J.S., Large, D., Semerjian, A., Curlin, M.E., O'Shea, M.A., Hallahan, C.W., Daucher, M., Ward, D.J., et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J. Clin. Invest. 115 (2005), 3250–3255.
Dahabieh, M.S., Battivelli, E., Verdin, E., Understanding HIV latency: the road to an HIV cure. Annu. Rev. Med. 66 (2015), 407–421.
Darcis, G., Van Driessche, B., Van Lint, C., HIV Latency: Should We Shock or Lock?. Trends Immunol. 38 (2017), 217–228.
Darcis, G., Das, A.T., Berkhout, B., Tackling HIV Persistence: Pharmacological versus CRISPR-Based Shock Strategies. Viruses, 10, 2018, E157.
Darcis, G., Berkhout, B., Pasternak, A.O., The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front. Immunol., 10, 2019, 2251.
Davey, R.T. Jr., Bhat, N., Yoder, C., Chun, T.W., Metcalf, J.A., Dewar, R., Natarajan, V., Lempicki, R.A., Adelsberger, J.W., Miller, K.D., et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA 96 (1999), 15109–15114.
Deeks, S.G., Lewin, S.R., Ross, A.L., Ananworanich, J., Benkirane, M., Cannon, P., Chomont, N., Douek, D., Lifson, J.D., Lo, Y.R., et al., International AIDS Society Towards a Cure Working Group. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat. Med. 22 (2016), 839–850.
Descours, B., Petitjean, G., López-Zaragoza, J.L., Bruel, T., Raffel, R., Psomas, C., Reynes, J., Lacabaratz, C., Levy, Y., Schwartz, O., et al. CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543 (2017), 564–567.
Douek, D.C., Disrupting T-cell homeostasis: how HIV-1 infection causes disease. AIDS Rev. 5 (2003), 172–177.
Estes, J.D., Kityo, C., Ssali, F., Swainson, L., Makamdop, K.N., Del Prete, G.Q., Deeks, S.G., Luciw, P.A., Chipman, J.G., Beilman, G.J., et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med. 23 (2017), 1271–1276.
Finzi, D., Hermankova, M., Pierson, T., Carruth, L.M., Buck, C., Chaisson, R.E., Quinn, T.C., Chadwick, K., Margolick, J., Brookmeyer, R., et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278 (1997), 1295–1300.
Finzi, D., Blankson, J., Siliciano, J.D., Margolick, J.B., Chadwick, K., Pierson, T., Smith, K., Lisziewicz, J., Lori, F., Flexner, C., et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5 (1999), 512–517.
Fletcher, C.V., Staskus, K., Wietgrefe, S.W., Rothenberger, M., Reilly, C., Chipman, J.G., Beilman, G.J., Khoruts, A., Thorkelson, A., Schmidt, T.E., et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA 111 (2014), 2307–2312.
Fromentin, R., Bakeman, W., Lawani, M.B., Khoury, G., Hartogensis, W., DaFonseca, S., Killian, M., Epling, L., Hoh, R., Sinclair, E., et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog., 12, 2016, e1005761.
Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C.M., Quigley, M.F., Almeida, J.R., Gostick, E., Yu, Z., Carpenito, C., et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17 (2011), 1290–1297.
Grau-Expósito, J., Serra-Peinado, C., Miguel, L., Navarro, J., Curran, A., Burgos, J., Ocaña, I., Ribera, E., Torrella, A., Planas, B., et al. A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4+ T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients. MBio, 8, 2017, e00876-17.
Hatano, H., Jain, V., Hunt, P.W., Lee, T.H., Sinclair, E., Do, T.D., Hoh, R., Martin, J.N., McCune, J.M., Hecht, F., et al. Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J. Infect. Dis. 208 (2013), 50–56.
Hiener, B., Horsburgh, B.A., Eden, J.S., Barton, K., Schlub, T.E., Lee, E., von Stockenstrom, S., Odevall, L., Milush, J.M., Liegler, T., et al. Identification of Genetically Intact HIV-1 Proviruses in Specific CD4+ T Cells from Effectively Treated Participants. Cell Rep. 21 (2017), 813–822.
Hogan, L.E., Vasquez, J., Hobbs, K.S., Hanhauser, E., Aguilar-Rodriguez, B., Hussien, R., Thanh, C., Gibson, E.A., Carvidi, A.B., Smith, L.C.B., et al. Increased HIV-1 transcriptional activity and infectious burden in peripheral blood and gut-associated CD4+ T cells expressing CD30. PLoS Pathog., 14, 2018, e1006856.
Hogarth, P.M., Pietersz, G.A., Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat. Rev. Drug Discov. 11 (2012), 311–331.
Holgado, M.P., Sananez, I., Raiden, S., Geffner, J.R., Arruvito, L., CD32 Ligation Promotes the Activation of CD4+ T Cells. Front. Immunol., 9, 2018, 2814.
Iglesias-Ussel, M., Vandergeeten, C., Marchionni, L., Chomont, N., Romerio, F., High levels of CD2 expression identify HIV-1 latently infected resting memory CD4+ T cells in virally suppressed subjects. J. Virol. 87 (2013), 9148–9158.
Imamichi, H., Dewar, R.L., Adelsberger, J.W., Rehm, C.A., O'Doherty, U., Paxinos, E.E., Fauci, A.S., Lane, H.C., Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc. Natl. Acad. Sci. USA 113 (2016), 8783–8788.
Kaiser, P., Joos, B., Niederöst, B., Weber, R., Günthard, H.F., Fischer, M., Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J. Virol. 81 (2007), 9693–9706.
Khoury, G., Anderson, J.L., Fromentin, R., Hartogenesis, W., Smith, M.Z., Bacchetti, P., Hecht, F.M., Chomont, N., Cameron, P.U., Deeks, S.G., Lewin, S.R., Persistence of integrated HIV DNA in CXCR3 + CCR6 + memory CD4+ T cells in HIV-infected individuals on antiretroviral therapy. AIDS 30 (2016), 1511–1520.
Lee, E., Bacchetti, P., Milush, J., Shao, W., Boritz, E., Douek, D., Fromentin, R., Liegler, T., Hoh, R., Deeks, S.G., et al. Memory CD4 + T-Cells Expressing HLA-DR Contribute to HIV Persistence During Prolonged Antiretroviral Therapy. Front. Microbiol., 10, 2019, 2214.
Lorenzo-Redondo, R., Fryer, H.R., Bedford, T., Kim, E.Y., Archer, J., Pond, S.L.K., Chung, Y.S., Penugonda, S., Chipman, J., Fletcher, C.V., et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530 (2016), 51–56.
Malnati, M.S., Scarlatti, G., Gatto, F., Salvatori, F., Cassina, G., Rutigliano, T., Volpi, R., Lusso, P., A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load. Nat. Protoc. 3 (2008), 1240–1248.
Martin, G.E., Pace, M., Thornhill, J.P., Phetsouphanh, C., Meyerowitz, J., Gossez, M., Brown, H., Olejniczak, N., Lwanga, J., Ramjee, G., et al. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA. Front. Immunol., 9, 2018, 928.
Murray, J.M., Zaunders, J.J., McBride, K.L., Xu, Y., Bailey, M., Suzuki, K., Cooper, D.A., Emery, S., Kelleher, A.D., Koelsch, K.K., PINT Study Team. HIV DNA subspecies persist in both activated and resting memory CD4+ T cells during antiretroviral therapy. J. Virol. 88 (2014), 3516–3526.
Noto, A., Procopio, F.A., Banga, R., Suffiotti, M., Corpataux, J.M., Cavassini, M., Riva, A., Fenwick, C., Gottardo, R., Perreau, M., Pantaleo, G., CD32+ and PD-1+ Lymph Node CD4 T Cells Support Persistent HIV-1 Transcription in Treated Aviremic Individuals. J. Virol. 92 (2018), e00901–e00918.
Osuna, C.E., Lim, S.Y., Kublin, J.L., Apps, R., Chen, E., Mota, T.M., Huang, S.H., Ren, Y., Bachtel, N.D., Tsibris, A.M., et al. Evidence that CD32a does not mark the HIV-1 latent reservoir. Nature 561 (2018), E20–E28.
Pasternak, A.O., Berkhout, B., HIV Reservoir: Finding the Right Needles in a Needlestack. Cell Host Microbe 20 (2016), 280–282.
Pasternak, A.O., Berkhout, B., What do we measure when we measure cell-associated HIV RNA. Retrovirology, 15, 2018, 13.
Pasternak, A.O., Adema, K.W., Bakker, M., Jurriaans, S., Berkhout, B., Cornelissen, M., Lukashov, V.V., Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J. Clin. Microbiol. 46 (2008), 2206–2211.
Pasternak, A.O., Jurriaans, S., Bakker, M., Prins, J.M., Berkhout, B., Lukashov, V.V., Cellular levels of HIV unspliced RNA from patients on combination antiretroviral therapy with undetectable plasma viremia predict the therapy outcome. PLoS ONE, 4, 2009, e8490.
Pasternak, A.O., Lukashov, V.V., Berkhout, B., Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology, 10, 2013, 41.
Pérez, L., Anderson, J., Chipman, J., Thorkelson, A., Chun, T.W., Moir, S., Haase, A.T., Douek, D.C., Schacker, T.W., Boritz, E.A., Conflicting evidence for HIV enrichment in CD32+ CD4 T cells. Nature 561 (2018), E9–E16.
Pillai, S.K., Deeks, S.G., Signature of the Sleeper Cell: A Biomarker of HIV Latency Revealed. Trends Immunol. 38 (2017), 457–458.
Pinzone, M.R., VanBelzen, D.J., Weissman, S., Bertuccio, M.P., Cannon, L., Venanzi-Rullo, E., Migueles, S., Jones, R.B., Mota, T., Joseph, S.B., et al. Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat. Commun., 10, 2019, 728.
Pollack, R.A., Jones, R.B., Pertea, M., Bruner, K.M., Martin, A.R., Thomas, A.S., Capoferri, A.A., Beg, S.A., Huang, S.H., Karandish, S., et al. Defective HIV-1 Proviruses Are Expressed and Can Be Recognized by Cytotoxic T Lymphocytes, which Shape the Proviral Landscape. Cell Host Microbe 21 (2017), 494–506.e4.
Rothenberger, M., Nganou-Makamdop, K., Kityo, C., Ssali, F., Chipman, J.G., Beilman, G.J., Hoskuldsson, T., Anderson, J., Jasurda, J., Schmidt, T.E., et al. Impact of Integrase Inhibition compared with nonnucleoside inhibition on HIV reservoirs in Lymphoid Tissues. J. Acquir. Immune Defic. Syndr. 81 (2019), 355–360.
Sharaf, R., Lee, G.Q., Sun, X., Etemad, B., Aboukhater, L.M., Hu, Z., Brumme, Z.L., Aga, E., Bosch, R.J., Wen, Y., et al. HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers. J. Clin. Invest. 128 (2018), 4074–4085.
Siliciano, J.D., Kajdas, J., Finzi, D., Quinn, T.C., Chadwick, K., Margolick, J.B., Kovacs, C., Gange, S.J., Siliciano, R.F., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9 (2003), 727–728.
Thornhill, J.P., Pace, M., Martin, G.E., Hoare, J., Peake, S., Herrera, C., Phetsouphanh, C., Meyerowitz, J., Hopkins, E., Brown, H., et al., CHERUB investigators. CD32 expressing doublets in HIV-infected gut-associated lymphoid tissue are associated with a T follicular helper cell phenotype. Mucosal Immunol. 12 (2019), 1212–1219.
van der Sluis, R.M., van Montfort, T., Pollakis, G., Sanders, R.W., Speijer, D., Berkhout, B., Jeeninga, R.E., Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes. PLoS Pathog., 9, 2013, e1003259.
van der Sluis, R.M., van Capel, T.M., Speijer, D., Sanders, R.W., Berkhout, B., de Jong, E.C., Jeeninga, R.E., van Montfort, T., Dendritic cell type-specific HIV-1 activation in effector T cells: implications for latent HIV-1 reservoir establishment. AIDS 29 (2015), 1003–1014.
van Montfort, T., van der Sluis, R., Darcis, G., Beaty, D., Groen, K., Pasternak, A.O., Pollakis, G., Vink, M., Westerhout, E.M., Hamdi, M., et al. Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway. EBioMedicine 42 (2019), 97–108.
Vásquez, J.J., Aguilar-Rodriguez, B.L., Rodriguez, L., Hogan, L.E., Somsouk, M., McCune, J.M., Deeks, S.G., Laszik, Z.G., Hunt, P.W., Henrich, T.J., CD32-RNA Co-localizes with HIV-RNA in CD3+ Cells Found within Gut Tissues from Viremic and ART-Suppressed Individuals. Pathog. Immun. 4 (2019), 147–160.
Wiegand, A., Spindler, J., Hong, F.F., Shao, W., Cyktor, J.C., Cillo, A.R., Halvas, E.K., Coffin, J.M., Mellors, J.W., Kearney, M.F., Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART. Proc. Natl. Acad. Sci. USA 114 (2017), E3659–E3668.
Wightman, F., Solomon, A., Khoury, G., Green, J.A., Gray, L., Gorry, P.R., Ho, Y.S., Saksena, N.K., Hoy, J., Crowe, S.M., et al. Both CD31(+) and CD31− naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J. Infect. Dis. 202 (2010), 1738–1748.
Williams, J.P., Hurst, J., Stöhr, W., Robinson, N., Brown, H., Fisher, M., Kinloch, S., Cooper, D., Schechter, M., Tambussi, G., et al., SPARTACTrial Investigators. HIV-1 DNA predicts disease progression and post-treatment virological control. eLife, 3, 2014, e03821.
Winckelmann, A., Barton, K., Hiener, B., Schlub, T.E., Shao, W., Rasmussen, T.A., Østergaard, L., Søgaard, O.S., Tolstrup, M., Palmer, S., Romidepsin-induced HIV-1 viremia during effective antiretroviral therapy contains identical viral sequences with few deleterious mutations. AIDS 31 (2017), 771–779.
Wittner, M., Dunay, G.A., Kummer, S., Bockhorn, M., Hüfner, A., Schmiedel, S., Degen, O., van Lunzen, J., Eberhard, J.M., Schulze Zur Wiesch, J., CD32 Expression of Different Memory T Cell Subpopulations in the Blood and Lymph Nodal Tissue of HIV Patients and Healthy Controls Correlates With Immune Activation. J. Acquir. Immune Defic. Syndr. 77 (2018), 345–349.