Padoan, F. C. S. M.; Altimari, P.; Pagnanelli, F. Recycling of End of Life Photovoltaic Panels: A Chemical Prospective on Process Development. Sol. Energy 2019, 177, 746-761, 10.1016/j.solener.2018.12.003
Weckend, S.; Wade, A.; Heath, G. End-of-Life Management: Solar Photovoltaic Panels; International Renewable Energy Agency (IRENA) and International Energy Agency Photovoltaic Power Systems Programme, 2016.
Schrijnemakers, A.; Frédéric Boschini, R. C. Method for Recycling Photovoltaic Solar Cells Module, Patent EP3323150, 2017.
Jung, B.; Park, J.; Seo, D.; Park, N. Sustainable System for Raw-Metal Recovery from Crystalline Silicon Solar Panels: From Noble-Metal Extraction to Lead Removal. ACS Sustainable Chem. Eng. 2016, 4 (8), 4079-4083, 10.1021/acssuschemeng.6b00894
Chen, Z.; You, Y.; Morita, K. Sustainable Simultaneous Synthesis of Titanium-Bearing Materials from Silicon Waste and TiO2-Bearing Slag. ACS Sustainable Chem. Eng. 2018, 6 (8), 10742-10750, 10.1021/acssuschemeng.8b02058
Dytrych, P.; Bumba, J.; Kastanek, F.; Fajgar, R.; Kostejn, M.; Solcova, O. Waste Photovoltaic Panels for Ultrapure Silicon and Hydrogen through the Low-Temperature Magnesium Silicide. Ind. Eng. Chem. Res. 2017, 56 (45), 12863-12869, 10.1021/acs.iecr.7b01156
Yi, Y. K.; Kim, H. S.; Tran, T.; Hong, S. K.; Kim, M. J. Recovering Valuable Metals from Recycled Photovoltaic Modules. J. Air Waste Manage. Assoc. 2014, 64 (7), 797-807, 10.1080/10962247.2014.891540
Hoffmann, M.-C.; Suitner, H.; Thomas, R. H2020 CABRISS Public Business Plan; Zenodo, 2017, 10.5281/zenodo.998558.
Yousef, S.; Tatariants, M.; Denafas, J.; Makarevicius, V.; Lukošiū tė, S. I.; Kruopienė, J. Sustainable Industrial Technology for Recovery of Al Nanocrystals, Si Micro-Particles and Ag from Solar Cell Wafer Production Waste. Sol. Energy Mater. Sol. Cells 2019, 191, 493-501, 10.1016/j.solmat.2018.12.008
Yousef, S.; Tatariants, M.; Tichonovas, M.; Makarevicius, V. Sustainable Technology for Mass Production of Ag Nanoparticles and Al Microparticles from Damaged Solar Cell Wafers. Waste Manage. 2019, 98, 126-134, 10.1016/j.wasman.2019.08.019
Huang, X.; Pu, H.; Chang, J.; Cui, S.; Hallac, P. B.; Jiang, J.; Hurley, P. T.; Chen, J. Improved Cyclic Performance of Si Anodes for Lithium-Ion Batteries by Forming Intermetallic Interphases between Si Nanoparticles and Metal Microparticles. ACS Appl. Mater. Interfaces 2013, 5 (22), 11965-11970, 10.1021/am403718u
Tamirat, A. G.; Hou, M.; Liu, Y.; Bin, D.; Sun, Y.; Fan, L.; Wang, Y.; Xia, Y. Highly Stable Carbon Coated Mg2Si Intermetallic Nanoparticles for Lithium-Ion Battery Anode. J. Power Sources 2018, 384, 10-17, 10.1016/j.jpowsour.2018.02.008
Wang, G. X.; Sun, L.; Bradhurst, D. H.; Zhong, S.; Dou, S. X.; Liu, H. K. Innovative Nanosize Lithium Storage Alloys with Silica as Active Centre. J. Power Sources 2000, 88 (2), 278-281, 10.1016/S0378-7753(00)00385-2
Obrovac, M. N. Si-Alloy Negative Electrodes for Li-Ion Batteries. Curr. Opin. Electrochem. 2018, 9, 8-17, 10.1016/j.coelec.2018.02.002
Chew, S. Y.; Guo, Z. P.; Wang, J. Z.; Chen, J.; Munroe, P.; Ng, S. H.; Zhao, L.; Liu, H. K. Novel Nano-Silicon/Polypyrrole Composites for Lithium Storage. Electrochem. Commun. 2007, 9 (5), 941-946, 10.1016/j.elecom.2006.11.028
Uchida, S.; Yamagata, M.; Ishikawa, M. Effect of Electrolyte Additives on Non-Nano-Si Negative Electrodes Prepared with Polyimide Binder. J. Electrochem. Soc. 2015, 162 (3), A406-A412, 10.1149/2.0581503jes
Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G. Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137 (7), 2565-2571, 10.1021/ja511181p
Wang, B.; Li, X.; Zhang, X.; Luo, B.; Zhang, Y.; Zhi, L. Contact-Engineered and Void-Involved Silicon/Carbon Nanohybrids as Lithium-Ion-Battery Anodes. Adv. Mater. 2013, 25 (26), 3560-3565, 10.1002/adma.201300844
Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. et al. Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. J. Mater. Chem. 2012, 22 (22), 11014-11017, 10.1039/c2jm31286g
Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-Ion Battery Anodes by in-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles. Nat. Commun. 2013, 4, 1943-1946, 10.1038/ncomms2941
Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. J. Phys. Chem. Lett. 2012, 3 (13), 1824-1829, 10.1021/jz3006892
Liu, N.; Lu, Z.; Zhao, J.; Mcdowell, M. T.; Lee, H. W.; Zhao, W.; Cui, Y. A Pomegranate-Inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes. Nat. Nanotechnol. 2014, 9 (3), 187-192, 10.1038/nnano.2014.6
Bang, B. M.; Lee, J. I.; Kim, H.; Cho, J.; Park, S. High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching. Adv. Energy Mater. 2012, 2 (7), 878-883, 10.1002/aenm.201100765
Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A Thin Film Silicon Anode for Li-Ion Batteries Having a Very Large Specific Capacity and Long Cycle Life. J. Power Sources 2004, 136, 303-306, 10.1016/j.jpowsour.2004.03.014
Esmanski, A.; Ozin, G. A. Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries. Adv. Funct. Mater. 2009, 19 (12), 1999-2010, 10.1002/adfm.200900306
Wang, J.; Yang, J.; Lu, S. A Mini Review: Nanostructured Silicon-Based Materials for Lithium Ion Battery. Nanosci. Nanotechnol. - Asia 2016, 6 (1), 3-27, 10.2174/221068120601160302171553
Chan, C. K.; Peng, H.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires There Is Great Interest in Developing Rechargeable Lithium Batteries with Higher Energy Capacity and Longer Cycle Life for Applications in Portable Electronic Devices, Electric Vehicles and I. Nature Nanotechnology 2007, 31-35, 10.1038/nnano.2007.411
Gauthier, M.; Reyter, D.; Mazouzi, D.; Moreau, P.; Guyomard, D.; Lestriez, B.; Roué, L. From Si Wafers to Cheap and Efficient Si Electrodes for Li-Ion Batteries. J. Power Sources 2014, 256, 32-36, 10.1016/j.jpowsour.2014.01.036
Gauthier, M.; Mazouzi, D.; Reyter, D.; Lestriez, B.; Moreau, P.; Guyomard, D.; Roué, L. A Low-Cost and High Performance Ball-Milled Si-Based Negative Electrode for High-Energy Li-Ion Batteries. Energy Environ. Sci. 2013, 6 (7), 2145-2155, 10.1039/c3ee41318g
Klugmann-Radziemska, E.; Ostrowski, P.; Drabczyk, K.; Panek, P.; Szkodo, M. Experimental Validation of Crystalline Silicon Solar Cells Recycling by Thermal and Chemical Methods. Sol. Energy Mater. Sol. Cells 2010, 94 (12), 2275-2282, 10.1016/j.solmat.2010.07.025
Park, J.; Park, N. RSC Advances Wet Etching Processes for Recycling Crystalline Silicon Solar Cells from End-of-Life Photovoltaic Modules. RSC Adv. 2014, 4, 34823-34829, 10.1039/C4RA03895A
Klugmann-Radziemska, E.; Ostrowski, P. Chemical Treatment of Crystalline Silicon Solar Cells as a Method of Recovering Pure Silicon from Photovoltaic Modules. Renewable Energy 2010, 35 (8), 1751-1759, 10.1016/j.renene.2009.11.031
Kang, S.; Yoo, S.; Lee, J.; Boo, B.; Ryu, H. Experimental Investigations for Recycling of Silicon and Glass from Waste Photovoltaic Modules. Renewable Energy 2012, 47, 152-159, 10.1016/j.renene.2012.04.030
Takami, K.; Kobashi, M.; Shiraga, Y.; Uddin, M. A.; Kato, Y.; Wu, S. Effect of HF and HNO3 Concentration on Etching Rate of Each Component in Waste Crystalline Silicon Solar Cells. Mater. Trans. 2015, 56 (12), 2047-2052, 10.2320/matertrans.M2015293
Park, J.; Kim, W.; Cho, N.; Lee, H.; Park, N. An Eco-Friendly Method for Reclaimed Silicon Wafers from a Photovoltaic Module: From Separation to Cell Fabrication. Green Chem. 2016, 18 (6), 1706-1714, 10.1039/C5GC01819F
Yi, R.; Gordin, M. L.; Wang, D. Integrating Si Nanoscale Building Blocks into Micro-Sized Materials to Enable Practical Applications in Lithium-Ion Batteries. Nanoscale 2016, 8 (4), 1834-1848, 10.1039/C5NR07625K
Porciúncula, C. B.; Marcilio, N. R.; Tessaro, I. C.; Gerchmann, M. Production of Hydrogen in the Reaction between Aluminum and Water in the Presence of NaOH and KOH. Braz. J. Chem. Eng. 2012, 29 (2), 337-348, 10.1590/S0104-66322012000200014
Russo, L.; Colangelo, F.; Cioffi, R.; Rea, I.; De Stefano, L. A Mechanochemical Approach to Porous Silicon Nanoparticles Fabrication. Materials 2011, 4 (6), 1023-1033, 10.3390/ma4061023
Nilssen, B. E.; Kleiv, R. A. Silicon Powder Properties Produced in a Planetary Ball Mill as a Function of Grinding Time, Grinding Bead Size and Rotational Speed. Silicon 2020, 21-23, 10.1007/s12633-019-00340-0
Emadi Shaibani, M.; Eshraghi, N.; Ghambari, M. Sintering of Grey Cast Iron Powder Recycled via Jet Milling. Mater. Eng. 2013, 47, 174-178, 10.1016/j.matdes.2012.11.058
Mahmoud, A.; Chamas, M.; Lippens, P. E. Electrochemical Impedance Study of the Solid Electrolyte Interphase in MnSn2 Based Anode for Li-Ion Batteries. Electrochim. Acta 2015, 184, 387-391, 10.1016/j.electacta.2015.10.078
Zhang, W. J. Lithium Insertion/Extraction Mechanism in Alloy Anodes for Lithium-Ion Batteries. J. Power Sources 2011, 196 (3), 877-885, 10.1016/j.jpowsour.2010.08.114
Li, J.; Dahn, J. R. An in Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si. J. Electrochem. Soc. 2007, 154 (3), 156-161, 10.1149/1.2409862
Lee, J. K.; Oh, C.; Kim, N.; Hwang, J. Y.; Sun, Y. K. Rational Design of Silicon-Based Composites for High-Energy Storage Devices. J. Mater. Chem. A 2016, 4 (15), 5366-5384, 10.1039/C6TA00265J
Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-Dependent Fracture of Silicon. ACS Nano 2012, 6 (2), 1522-1531, 10.1021/nn204476h
Hansen, S.; Quiroga-González, E.; Carstensen, J.; Adelung, R.; Föll, H. Size-Dependent Physicochemical and Mechanical Interactions in Battery Paste Anodes of Si-Microwires Revealed by Fast-Fourier-Transform Impedance Spectroscopy. J. Power Sources 2017, 349, 1-10, 10.1016/j.jpowsour.2017.03.025
Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R. Towards High Capacity Li-Ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-Micron V-Doped LiFePO 4 Cathodes. Sci. Rep. 2016, 6 (March), 1-11, 10.1038/srep37787
Oumellal, Y.; Delpuech, N.; Mazouzi, D.; Dupré, N.; Gaubicher, J.; Moreau, P.; Soudan, P.; Lestriez, B.; Guyomard, D. The Failure Mechanism of Nano-Sized Si-Based Negative Electrodes for Lithium Ion Batteries. J. Mater. Chem. 2011, 21 (17), 6201-6208, 10.1039/c1jm10213c
Kuziora, P.; Wyszyńska, M.; Polanski, M.; Bystrzycki, J. Why the Ball to Powder Ratio (BPR) Is Insufficient for Describing the Mechanical Ball Milling Process. Int. J. Hydrogen Energy 2014, 39 (18), 9883-9887, 10.1016/j.ijhydene.2014.03.009
Weckend, S.; Wade, A.; Heath, G. End-of-Life Management of Solar Photovoltaic Panels; International Renewable Energy Agency and International Energy Agency, 2016 (accessed May 15, 2018). Available from: https://www.Irena.org/Publications/2016/Jun/End-of-Life-Management-Solar-Photovoltaic-Pane.