Article (Scientific journals)
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Barth, Alexander; Alvera Azcarate, Aida; Licer, Matjaz et al.
2020In Geoscientific Model Development, 13 (3), p. 1609-1622
Peer Reviewed verified by ORBi
 

Files


Full Text
gmd-13-1609-2020.pdf
Publisher postprint (3.83 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
neural network; satellite images; autoencoder
Abstract :
[en] A method to reconstruct missing data in sea surface temperature data using a neural network is presented. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images. Contrary to standard image reconstruction with neural networks, this application requires a method to handle missing data (or data with variable accuracy) in the training phase. The present work shows a consistent approach which uses the satellite data and its expected error variance as input and provides the reconstructed field along with its expected error variance as output. The neural network is trained by maximizing the likelihood of the observed value. The approach, called DINCAE (Data INterpolating Convolutional Auto-Encoder), is applied to a 25-year time series of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature data and compared to DINEOF (Data INterpolating Empirical Orthogonal Functions), a commonly used method to reconstruct missing data based on an EOF (empirical orthogonal function) decomposition. The reconstruction error of both approaches is computed using cross-validation and in situ observations from the World Ocean Database. DINCAE results have lower error while showing higher variability than the DINEOF reconstruction.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barth, Alexander  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Alvera Azcarate, Aida  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Licer, Matjaz
Beckers, Jean-Marie  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Publication date :
2020
Journal title :
Geoscientific Model Development
ISSN :
1991-959X
eISSN :
1991-9603
Publisher :
Copernicus Gesellschaften, Germany
Volume :
13
Issue :
3
Pages :
1609-1622
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
MULTI-SYNC project (contract SR/00/359), Consortium des Équipements de Calcul Intensif (CÉCI), funded by the F.R.S.-FNRS under grant no. 2.5020.11, COST action ES1402 – “Evaluation of Ocean Syntheses”
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Available on ORBi :
since 30 March 2020

Statistics


Number of views
253 (13 by ULiège)
Number of downloads
169 (14 by ULiège)

Scopus citations®
 
81
Scopus citations®
without self-citations
77
OpenCitations
 
33
OpenAlex citations
 
91

Bibliography


Similar publications



Contact ORBi