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Abstract. A method to reconstruct missing data in sea sur-
face temperature data using a neural network is presented.
Satellite observations working in the optical and infrared
bands are affected by clouds, which obscure part of the ocean
underneath. In this paper, a neural network with the struc-
ture of a convolutional auto-encoder is developed to recon-
struct the missing data based on the available cloud-free pix-
els in satellite images. Contrary to standard image recon-
struction with neural networks, this application requires a
method to handle missing data (or data with variable accu-
racy) in the training phase. The present work shows a consis-
tent approach which uses the satellite data and its expected
error variance as input and provides the reconstructed field
along with its expected error variance as output. The neural
network is trained by maximizing the likelihood of the ob-
served value. The approach, called DINCAE (Data INterpo-
lating Convolutional Auto-Encoder), is applied to a 25-year
time series of Advanced Very High Resolution Radiome-
ter (AVHRR) sea surface temperature data and compared to
DINEOF (Data INterpolating Empirical Orthogonal Func-
tions), a commonly used method to reconstruct missing data
based on an EOF (empirical orthogonal function) decompo-
sition. The reconstruction error of both approaches is com-
puted using cross-validation and in situ observations from
the World Ocean Database. DINCAE results have lower er-
ror while showing higher variability than the DINEOF recon-
struction.

1 Introduction

The ocean temperature is an essential variable to study the
dynamics of the ocean, because density is a function of tem-
perature and therefore the ocean velocity variability depends
partially on ocean temperature. The amount of heat stored in
the ocean is also critical for weather predictions at various
scales (e.g., hurricane path prediction in the short range, as
well as for seasonal and climate predictions).

The ocean sea surface temperature (SST) has been rou-
tinely measured since the beginning of the 1980s. However,
as for any measuring technique working in the infrared or
visible bands, clouds often obscure large parts of the field of
view. Several techniques have been proposed for reconstruct-
ing gappy satellite data, but often small-scale information is
filtered out.

DINEOF (Data INterpolating Empirical Orthogonal Func-
tions; Beckers and Rixen, 2003; Alvera-Azcárate et al., 2005)
is an iterative method to reconstruct missing observations
reducing noise in satellite datasets using empirical orthog-
onal functions (EOFs). A truncated EOF decomposition us-
ing the leading EOFs is performed, and the initially miss-
ing data are reconstructed using this EOF decomposition.
The EOF decomposition and reconstruction process is re-
peated until convergence. DINEOF has been applied to sev-
eral oceanographic variables at different spatial resolutions
(e.g., Alvera-Azcárate et al., 2005, for SST; Alvera-Azcárate
et al., 2007, for ocean color; Alvera-Azcárate et al., 2016,
for sea surface salinity), providing accurate reconstructions.
A truncated EOF decomposition will focus primarily on spa-
tial structures with a “strong” signature (or more formally
defined with a significant L2 norm compared to the total
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variance). Small-scale structures can be included in a trun-
cated EOF decomposition as long as their related variance is
large enough to be present in the retained EOF modes. But
small-scale structures tend to be transient (short lived), and
they are therefore often not retained in the dominant EOF
modes. It should be noted that there is no explicit spatial fil-
tering scale in DINEOF removing small-scale features (un-
like other methods like optimal interpolation, kriging, spline
interpolation). But in practice a similar smoothing effect is
noticed because of the EOF truncation (which is necessary
in the presence of clouds).

Neural networks are mathematical models that can effi-
ciently extract nonlinear relationships from a mapping prob-
lem (i.e., an input/output relationship that can be determined
through a mathematical function). Neural networks are there-
fore especially well positioned to learn nonlinear, stochastic
features measured at the sea surface by satellite sensors, and
their use might prove efficient in retaining these structures
when analyzing satellite data, e.g., for reconstructing miss-
ing data.

Neural networks can be composed of a wide variety of
building blocks, such as fully connected layers (Rosen-
blatt, 1958; Widrow and Hoff, 1962), recurrent networks
(e.g., long short-term memory; Hochreiter and Schmidhuber,
1997; and gated recurrent units; Cho et al., 2014) and convo-
lutional layers (LeCun et al., 1998; Krizhevsky et al., 2012).
Recurrent networks work typically with a one-dimensional
list of inputs of a variable length (such as a text sentence).
Fully connected layers and convolutional layers require users
to have a full dataset without missing data, at least for the
training phase. For a review on neural networks, the reader
is referred to Schmidhuber (2015) and references therein. As
neural networks are typically applied on a large and complete
dataset (i.e., no or almost no gaps) as input data, a solution
needs to be found to handle a large number of missing data.

The use of neural networks in the frame of Earth observa-
tion has been increasing recently. Garcia-Gorriz and Garcia-
Sanchez (2007), for example, used meteorological variables
like wind and air temperature (among others) to infer SST,
with the aim of reproducing annual and interannual variabil-
ity of SST during the pre-satellite era. Patil and Deo (2017)
used a wavelet neural network to predict SST at various lo-
cations in the Indian Ocean, which allowed them to focus on
daily variations of SST. Pisoni et al. (2008) resorted to past
instances and averaging to overcome gaps in SST, which re-
sults in smooth reconstructions. Krasnopolsky et al. (2016)
used neural networks to infer ocean color in the complete
absence of these data (i.e., emulating a sensor failure). The
neural network by Krasnopolsky et al. (2016) uses as input
satellite sea surface elevation, sea surface salinity, sea surface
temperature, and in situ Argo salinity and temperature verti-
cal profiles with some auxiliary information (like longitude,
latitude and time) to estimate the Chlorophyll a concentra-
tion. The network does not use measured Chlorophyll a con-
centration at a given location as input during inference (the

reconstruction phase) nor the information from nearby grid
points to infer Chlorophyll a concentration. The network is
exposed to the chlorophyll a measurements only during the
training phase. Jo et al. (2018) infers ocean color from re-
lated data (SST and wind among others), taking advantage
of the close relation between different ocean variables but
also at a lower spatial resolution. Renosh et al. (2017) pro-
duced a suspended particulate matter dataset from model and
in situ data using self organizing maps that were compared to
satellite data. Chapman and Charantonis (2017) used surface
satellite data to infer subsurface ocean currents also by using
self organizing maps. Also using self organizing maps, Jouini
et al. (2013) reconstructed missing data in chlorophyll a data
using the relation between this variable and ocean currents
(proxied by SST and sea surface height).

The objective of this article is to present a neural network
in the form of a convolutional auto-encoder which can be
trained on gappy satellite observations in order to reconstruct
missing observations and also to provide an error estimate
of the reconstruction. This neural network is referred to in
the following as DINCAE (Data INterpolating Convolutional
Auto-Encoder). An auto-encoder is a particular type of net-
work which can compress and decompress the information
in an input dataset (Hinton and Salakhutdinov, 2006), effec-
tively reducing the dimensionality in the input data. Project-
ing the input data on a low-dimensional subspace is also the
central idea of DINEOF, where it is achieved by an EOF de-
composition.

In Sect. 2, the SST dataset used in this study is presented.
This dataset is the input of the neural network described in
Sect. 3. This section includes the general structure of the
network, the activation functions, skip connections, the cost
function and its optimization. The SST dataset is also recon-
structed with DINEOF (Sect. 4). The results are validated
by cross-validation and by a comparison to the World Ocean
Database 2018 in Sect. 5. Finally, the conclusions are pre-
sented in Sect. 6.

2 Data availability

For this study we used the longest available time series com-
ing from the Advanced Very High Resolution Radiometer
(AVHRR) dataset (Kilpatrick et al., 2001), spanning 25 years
from 1 April 1985 to 31 December 2009. The data are dis-
tributed by the Physical Oceanography Distributed Active
Archive Center (PO.DAAC), and they have a spatial resolu-
tion of 4 km and a temporal resolution of 1 d. The dataset can
directly be accessed by following the DOI link in the refer-
ences (AVHRR Data, 2003). In this study, we focus on part of
the Provençal basin (4.5625 to 9.5◦ E and 39.5 to 44.4375◦ N,
Fig. 1) where the main circulation features are the Western
Corsican Current (WCC) and the Northern Current (NC) de-
scribing a cyclonic circulation pattern. In addition, several
mesoscale and submesoscale circulation features are present
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in this area. With a resolution of 4 km, the SST data measures
only mesoscale and basin-wide variability.

For this study, only SST data with quality flags of 4 or
higher are retained (Evans et al., 2009). One single image
is composed of 112× 112 grid points. If a given pixel has
measurements less than 5 % of the time, then it is not recon-
structed, and it is considered a land point in the following. In
total, 27 % of grid points correspond to land. Images with at
least 20 % of valid sea points are retained for the reconstruc-
tion, which corresponds to a total of 5266 time instances.

To assess the accuracy of the reconstruction method, cross-
validation is used (e.g., Wilks, 1995). For cross-validation, a
subset of the data is withheld from the analysis and the final
reconstruction is compared to the withheld dataset to access
its accuracy. Since clouds have a spatial extent, we wanted
to withhold data with a similar spatial structure. In the last
50 images, we removed data according to the cloud mask of
the first 50 images of the SST time series. The last 50 images
represent the data from 25 September to 27 December 2009
(since some scenes with too few data have been dropped as
mentioned before). These data are not used at all during ei-
ther the training or the reconstruction phases, and they can
therefore be considered independent. In total, 106 816 mea-
surements (i.e., individual pixels) have been withheld this
way.

Initially, the average cloud coverage of the dataset is 46 %
(over all 25 years). The cloud coverage for the last 50 scenes
is increased to 77 % when the cross-validation points are
excluded. A significant part of the scene is obscured after
marking the data for cross-validation, but in the Mediter-
ranean Sea the cloud coverage is relatively low compared to
the globally averaged cloud coverage, which is 75 % (Wylie
et al., 2005). Removing some data for cross-validation thus
makes the cloud coverage more similar to the global average.

3 Neural network with missing data as input

Convolutional and other deep neural networks are exten-
sively used in computer vision, and they find an increasing
number of applications in Earth sciences (Rasp et al., 2018;
Bolton and Zanna, 2019; Zhou et al., 2016; Geng et al., 2015)
where full datasets are available, at least for training a net-
work. However, when using satellite data, the number of im-
ages without any clouds is very small, and it is difficult to
provide enough training data when only clear images are
used. Therefore, the aim is to derive a reconstruction strat-
egy which can cope with the large amounts of missing data
typically found in remote-sensing data.

The handling of missing data is done in analogy to data as-
similation in numerical ocean models. The standard optimal
interpolation equations (e.g., Bretherton et al., 1976; Buon-
giorno Nardelli, 2012) can be written as follows:

Figure 1. The red rectangle delimits the studied region, and the
color represents the bathymetry in meters. The arrows represent the
main currents: the Western Corsican Current (WCC), the Eastern
Corsican Current (ECC) and the Northern Current (NC).

Pa−1xa
= Pf−1

xf
+HTR−1yo, (1)

Pa−1
= Pf−1

+HTR−1H, (2)

where xf is the model forecast with error covariance Pf, yo

represents the observations with error covariance R and H
is the observation operator extracting the observed part from
the state vector xf. The analysis xa is the combined estimate
with the error covariance matrix Pa. We use these equations
as an analogy to propose an approach to handle missing data
(or data with errors varying in space and/or time). The main
input datasets of the CAE (convolutional auto-encoder) are
(i) the SST divided by its error variance (corresponding to
R−1yo) and (ii) the inverse of the error variance (correspond-
ing to the diagonal elements of R−1, assuming spatially un-
correlated errors). If a data point is missing, then the cor-
responding error variance is considered infinitely large, and
the value at this point would be zero for both input datasets.
The main difference is that in optimal interpolation the ob-
servation vector yo is multiplied by the inverse of the error
covariance (possibly including nondiagonal elements), while
in the present case we use only the error variance. The struc-
ture of the neural network will be used to spatially propagate
the information from the observations.

The time average has been removed from the SST dataset
(computed over all years but excluding the cross-validation
dataset). The neural network thus works with anomalies rel-
ative to this mean SST. To obtain reasonable results, the net-
work uses more input than merely SST divided by its error
variance and the inverse of the error variance. The total list
of input parameters is consequently the following:
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– SST anomalies scaled by the inverse of the error vari-
ance (the scaled anomaly is zero if the data are missing),

– inverse of the error variance (zero if the data are miss-
ing),

– scaled SST anomalies and inverse of error variance of
the previous day,

– scaled SST anomalies and inverse of error variance of
the next day,

– longitude (scaled linearly between −1 and 1),

– latitude (scaled linearly between −1 and 1),

– cosine of the day of the year divided by 365.25,

– sine of the day of the year divided by 365.25.

The complete dataset is thus represented by an array of
the size 10× 112× 112× 5266 (number of inputs, number
of grid points in the zonal direction, number of grid points
in the meridional direction, number of time instances). The
inverse of the error variance is either zero (for missing data)
or a constant. The precise value of this constant is not impor-
tant, because it will be multiplied by a weight matrix and this
weight matrix will be optimized by training the network. In
future studies, it would be interesting to use sensor-specific
error statistics provided with GHRSST (Group for High Res-
olution Sea Surface Temperature) products, i.e., spatially and
temporally varying error estimates. Using the previous and
next day as inputs and the information on the season (last
two inputs) will allow for a temporal coherency of the re-
sults. It should be noted that DINEOF does not use the day
of the year of each satellite image, but it uses a temporal filter
which increases the temporal coherence of the reconstruction
(Alvera-Azcárate et al., 2009). The final layer of the neural
network produces the following output:

– SST scaled by the inverse of the expected error variance,

– logarithm of the inverse of the expected error variance.

The overall structure of the neural network (Table 2) is
a convolutional auto-encoder (CAE; Hinton and Salakhut-
dinov, 2006; Ronneberger et al., 2015). Its main build-
ing blocks are convolutional layers (LeCun et al., 1998;
Krizhevsky et al., 2012). DINCAE uses five encoding and
five decoding layers with a different number of filters. Be-
sides the input and output layers, the number of filters are
16, 24, 36 and 54 (the number of filters increases 50 % from
one encoding convolutional layer to the next). All convo-
lutional layers have a receptive field of 3× 3 grid points
(Simonyan and Zisserman, 2015). Between the convolu-
tional layers there are max pooling or average pooling layers
(Scherer et al., 2010) to progressively reduce the spatial reso-
lution by only retaining either the maximum or average value

of a region of 2× 2 grid points. After the last encoding con-
volutional layer, there are two fully connected layers (the so-
called bottleneck). The number of neurons in the bottleneck
is a fifth of the number of the last pooling layer of the encoder
(rounded to the nearest integer). Dropout is used in the fully
connected layers to avoid overfitting. The decoding layers
are composed of convolutional layers and interpolation lay-
ers (to the nearest neighbor) to upsample the results. We also
added skip connections between the output of pooling layers
and the upsampling layers (Ronneberger et al., 2015). These
skip connections correspond to layers 16, 19, 22 and 25 of
Table 1. The motivation of this choice is that large-scale in-
formation of the SST would be captured by the neurons in the
bottleneck, but small-scale structures unrelated to the overall
structure in the SST would be handled by these skip connec-
tions. In the absence of the skip connections, the small-scale
structures would be removed from the dataset.

A rectified linear unit (RELU) activation function is com-
monly used in neural networks, which is defined as

f (x)=max(x,0). (3)

However, in our case it quickly leads (in 10 epochs) to a
zero gradient and thus to no improvement in training. This
problem is solved by choosing a leaky RELU (Maas et al.,
2013) for the convolutions and the standard RELU for the
fully connected layers.

f (x)=max(x,αx), (4)

where we use here α = 0.2. The output of the network, i.e.,
the 26th layer of Table 1, is an array T (26)

ijk with 112× 112×
2 elements. The first slice, k = 1, is essentially interpreted as
the logarithm of the inverse of the expected error variance
and the second slice is the temperature anomaly divided by
the error variance. The reconstructed temperature anomaly,
ŷij , and the corresponding error variance, σ̂ 2

ij (for every sin-
gle grid point i,j ), are computed as

σ̂ 2
ij =

1

max
(

exp
(

min
(
T
(26)
ij1 ,γ

))
,δ
) , (5)

ŷij = T
(26)
ij2 σ̂ 2

ij , (6)

where γ = 10 and δ = 10−3 ◦C−2. The min and max func-
tions in the previous equations are introduced to avoid a di-
vision by a value close to zero or a floating-point overflow.
The effective range of the error standard deviation is thus
from exp(−γ /2)= 0.0067 ◦C to δ−

1
2 = 31.6 ◦C, which is a

relatively wide range as the error is expected to be O(0.1) to
O(1) ◦C. The bounds are only effective during the very first
epochs of the neural network where the weights are still close
to random values.

3.1 Training of the neural network

The input dataset is randomly shuffled (over the time dimen-
sion) and partitioned into so-called minibatches of 50 im-
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Table 1. List of all steps in DINCAE. The additional dimension of the size of the minibatch is omitted in the output sizes below. Max pooling
and average pooling are tested for the pooling layers.

Layer number Type Output size Parameters

1 input 112× 112× 8
2 conv. 2D 112× 112× 16 no. filters = 16, kernel size = (3,3)
3 pooling 2D 56× 56× 16 pool size = (2,2), strides = (2,2)
4 conv. 2D 56× 56× 24 no. filters = 24, kernel size = (3,3)
5 pooling 2D 28× 28× 24 pool size = (2,2), strides = (2,2)
7 conv. 2D 28× 28× 36 no. filters = 36, kernel size = (3,3)
8 pooling 2D 14× 14× 36 pool size = (2,2), strides = (2,2)
9 conv. 2D 14× 14× 54 no. filters = 54, kernel size = (3,3)
10 pooling 2D 7× 7× 54 pool size = (2,2), strides = (2,2)
11 fully connected layer 529
12 dropout layer 529 dropout rate for training = 0.3
13 fully connected layer 2646
14 dropout layer 2646 dropout rate for training = 0.3
15 nearest-neighbor interpolation 14× 14× 54
16 concatenate output of 15 and 8 14× 14× 90
17 conv. 2D 14× 14× 36 no. filters = 36, kernel size = (3,3)
18 nearest-neighbor interpolation 28× 28× 36
19 concatenate output of 18 and 5 28× 28× 60
20 conv. 2D 28× 28× 24 no. filters = 24, kernel size = (3,3)
21 nearest-neighbor interpolation 56× 56× 24
22 concatenate output of 21 and 3 56× 56× 40
23 conv. 2D 56× 56× 16 no. filters = 16, kernel size = (3,3)
24 nearest-neighbor interpolation 112× 112× 16
25 concatenate output of 24 and 1 112× 112× 26
26 conv. 2D 112× 112× 2 no. filters = 2, kernel size = (3,3)

ages, as an array of the size 10× 112× 112× 50. The com-
plete time series is split into 105 minibatches with 50 images
each and one last minibatch with only 16 images (represent-
ing a total of 5266 as mentioned before). The splitting of the
dataset into minibatches is necessary, because the graphical
processing unit (GPU) has only a limited amount of mem-
ory. Computing the gradient over randomly chosen subsets
also introduces some stochasticity which prevents the min-
imization algorithm from being trapped in a local minima.
An optimization cycle using all 106 minibatches is called an
epoch.

For every input image, more data points were masked (in
addition to the cross-validation) by using a randomly cho-
sen cloud mask during training. The cloud mask of a training
image would thus be the union of the cloud mask of the in-
put dataset and a randomly chosen cloud mask. This allows
us to assess the capability of the network to recover missing
data under clouds. Without the additional clouds, the neu-
ral network would simply learn to reproduce the SST values
that are already received as input. At every epoch a different
mask is applied to a given image to mitigate overfitting and
aid generalization.

The aim of DINCAE is to provide a good SST recon-
struction but also an assessment of the accuracy of the re-
construction. The output of the neural network is assumed

to be a Gaussian probability distribution function (pdf) char-
acterized by a mean ŷij and a standard deviation σ̂ij . Given
this pdf, one can compute the likelihood, p(yij |ŷij , σ̂ij ), of
the observed values yij . The weights and biases in the neural
network are adjusted to maximize the likelihood of all obser-
vations. Maximizing the likelihood is equivalent to minimiz-
ing the negative log likelihood:

J (ŷij , σ̂ij )=−
1
N

∑
ij

log
(
p(yij |ŷij , σ̂ij )

)
, (7)

where N is the number of measurements in yij (excluding
land points and cross-validation points). Including the num-
ber measurements N is important as it can change from one
minibatch to the other. The likelihood of the observations,
p(yij |ŷij , σ̂ij ), is given by a Gaussian distribution:

p(yij |ŷij , σ̂ij )=
1√

2πσ̂ 2
ij

exp

(
−
(yij − ŷij )

2

2σ̂ 2
ij

)
. (8)

The cost function finally has the following form:

J (ŷij , σ̂ij )=
1

2N

∑
ij

[(
yij − ŷij

σ̂ij

)2

+ log
(
σ̂ 2
ij

)
+ 2log

(√
2π
)]
. (9)
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The loss function per individual scalar sample is the term
in brackets of the previous equation. The first term is directly
related to the mean square error but scaled by the estimated
error standard deviation. The second term penalizes any over-
estimation of the error standard deviation. The third term is
a constant term which can be neglected in the following as
it does not influence the gradient. The sum in the previous
equation runs over all grid points where a measurement is
available but excluding the measurements withheld for cross-
validation as the latter are never used during training.

We used the Adam optimizer (Kingma and Ba, 2014) with
the standard parameters for the learning rate α = 0.001, the
exponential decay rate for the first-moment estimates β1 =

0.9 and for the second-moment estimates β2 = 0.999, and
regularization parameter ε = 10−8.

During the development of the neural network, it was clear
that it tended to overfit the provided observations, leading
to degraded results when comparing the network to cross-
validation data. Commonly used strategies were therefore
used to avoid overfitting, namely introducing a dropout layer
between the fully connected layers of the network. The
dropout layer randomly sets, with a probability of 0.3, the
output of these intermediate layers to zero during the train-
ing of the network. We also added some Gaussian-distributed
noise to the input of the network with a zero mean and a stan-
dard deviation of 0.05 ◦C.

It is useful to compare the proposed approach to the tra-
ditional auto-encoder to highlight the different choices that
have been adopted. The essential steps to implement and val-
idate an auto-encoder are the following:

– Some data are marked for validation and never used dur-
ing training.

– The network is given some data as input and produces
an output which should be as close as possible to the
input. All training data are thus given at all epochs to
the network.

– The network is validated using the validation dataset
that was set aside.

In essence, the traditional auto-encoder optimizes how
well the provided input data can be recovered after dimen-
sionality reduction. In the present approach, there are two
steps where data are intentionally hidden to the network:

1. The validation data that were set aside and never used
during the training, similar to the traditional auto-
encoder.

2. Some additional data in every minibatch were set aside
to compute the reconstruction error and its gradient (un-
like the traditional auto-encoder). This additional subset
is chosen at random.

This is done because the main purpose of the network is
to assess the ability of the network to reconstruct the missing

data using the available data. The proposed method is not
withholding less data than the traditional auto-encoder. The
downside of the approach is that the cost function fluctuates
more, because it is computed only over a relatively smaller
set of data. But for us this is acceptable (and controlled by
taking the average of the output of the network at several
epochs, as explained later), because the cost function reflects
more closely the objective: reconstructing missing data from
the available data (instead of reproducing the input data as it
is the case of the traditional auto-encoder).

The traditional auto-encoder approach trained using only
clear images was not considered, because only 13 images out
of 5266 have a cloud coverage of less than 5 %. So the ability
to handle missing data was a requirement for us from the
start.

4 DINEOF reconstruction

The results of the DINCAE method are compared to the
reconstruction obtained by the DINEOF method (Alvera-
Azcárate et al., 2005), which uses an EOF-basis to infer the
missing data. As a first step, the spatial and temporal mean is
removed from the data, and the missing data are set to zero.
The leading EOF modes are then computed and the missing
data are reconstructed using these EOFs (Alvera-Azcárate
et al., 2005). A temporal low-pass filter with a cut-off pe-
riod of 1.08 d is applied to improve the temporal coherency
of the results, following Alvera-Azcárate et al. (2009). This
filter effectively propagates the information in time so that
for a given date the satellite data from the previous and next
days are used in the reconstruction. The optimal number of
EOFs retained in this reconstruction is 13 modes, which ex-
plain 99.4 % of the variability of the initial data.

The classical DINEOF technique reconstructs the cross-
validation data points withheld in the last 50 images with an
error of 0.4629 ◦C and a slight negative bias of −0.0922 ◦C
(Table 2). As only 13 modes are retrained by DINEOF for the
reconstruction, some small-scale structures are smoothed-
out, which is a well-known property of a truncated EOF de-
composition (Wilks, 1995). This smoothing effect results in
an RMSE (root mean square error) of 0.3864 ◦C when com-
paring the reconstructed dataset to all the initially present
SST (i.e., used for the reconstruction). A somewhat surpris-
ing result is that when using less data with DINEOF (only
from the last 2 years, i.e., 2008 to 2009), 19 EOFs modes are
retained, leading to a reconstruction with richer structures.
Therefore, the RMSE compared to all the initially present
SST provided to DINEOF (but excluding the cross-validation
data) is lower (0.3375 ◦C) than when the 25-year dataset is
used. However, the RMSE compared to the cross-validation
data is slightly worse with the 2-year dataset (0.4789 ◦C). As
the main validation statistic for this study is the RMSE com-
pared to the cross-validation dataset, we use the DINEOF
reconstruction of the full 25-year dataset. DINEOF used 15 h

Geosci. Model Dev., 13, 1609–1622, 2020 www.geosci-model-dev.net/13/1609/2020/



A. Barth et al.: Convolutional neural networks with error estimates to reconstruct satellite observations 1615

Figure 2. The cost function computed internally for every mini-
batch during the optimization.

of a single core on an Intel Core i7-3930K CPU to recon-
struct the 25 years.

5 Results

The Fig. 2 shows the cost function for every minibatch. Large
fluctuations are quite apparent from this figure. But it is ex-
pected that the cost function will fluctuate using any opti-
mization method based on minibatch (unless the learning
rate explicitly is decreased to zero, which is not the case
here), because the cost function is evaluated using a differ-
ent minibatch at every iteration. Consequently, the gradient
of the cost function also includes some stochastic variability.
Even if the dataset is small and the gradient could be com-
puted over the entire dataset at once, using minibatches is
still advised because these fluctuations allow the cost func-
tion to get out of local minima (Ge et al., 2015; Masters
and Luschi, 2018). While the minibatch selection effectively
computes the gradient over a temporal subset, the additional
data marked as missing within a minibatch is a spatial subset
which enhances these fluctuations but allows us to define the
cost function more closely to our objective (i.e., inferring the
missing data from observations, as explained above).

The neural network is updated using the gradient for ev-
ery minibatch during training, and after every 10 epochs the
current state of the neural network is used to infer the miss-
ing data over the whole time series, and in particular re-
constructing the missing data in the cross-validation dataset.
But, importantly, the network is not updated using the cross-
validation data.

Figure 3 shows the RMSE relative to the cross-validation
dataset computed every 10 epochs (during this reconstruc-
tion phase dropout is disabled) using DINCAE. There is an
initial sharp decrease of the cross-validation error, and after

Figure 3. RMSE difference with cross-validation dataset as a func-
tion of iteration. The solid blue line represents the DINCAE recon-
struction at different steps of the iterative minimization algorithm.
The dashed cyan line is the DINEOF reconstruction and the dashed
red line is the average DINCAE reconstruction between epochs 200
and 1000.

200 epochs the RMSE has mostly stabilized but still presents
some fluctuations. These fluctuations are due to the fact that
the gradient computed at every optimization set is computed
over a subset of the data and this subset varies at every op-
timization step. As mentioned before, in every minibatch a
random subset (in the form of clouds) of data is marked as
missing, and the gradient is computed over this randomly
changing subset, which leads to some fluctuations in the gra-
dient and thus in the parameters of the neural network. In
order to obtain a better estimate of the reconstruction, we av-
erage the output of the neural network between epoch 200
and epoch 1000 (saved at every 10th epoch), which leads to
a better reconstruction than every individual intermediate re-
sult. The expected error of the reconstruction is similarly av-
eraged. Ideally, one would take the correlation of the error
between the different reconstructions into account. Ignoring
these error correlations could result in overestimating the ex-
pected error of the reconstruction. Alternatively one would
average the output of an ensemble of neural networks ini-
tialized with different weights (and possibly using different
structures) but this would significantly increase the neces-
sary computing resources of the technique (Krizhevsky et al.,
2012). But this ensemble averaging approach could be bene-
ficial to improve the representation of the expected error and
the accuracy of the reconstruction.

Instead of using the average, the median reconstruction
was also tested, as the median is more robust to outliers. The
results were very similar and slightly better with the average
instead of the median SST. In the following, only the average
estimate is used.

www.geosci-model-dev.net/13/1609/2020/ Geosci. Model Dev., 13, 1609–1622, 2020



1616 A. Barth et al.: Convolutional neural networks with error estimates to reconstruct satellite observations

Table 2. Comparison with the independent cross-validation data and the dependent data used for training (in ◦C). CRMSE is the centered
root mean square error.

CV data non-CV data

RMSE CRMSE Bias RMSE CRMSE Bias

DINEOF 0.4629 0.4536 −0.0922 0.3864 0.3864 −0.0029
DINEOF (2008–2009) 0.4789 0.4715 −0.0839 0.3376 0.3375 −0.0038
DINCAE (no skip connections) 0.4458 0.4456 0.0147 0.2957 0.2953 0.0153
DINCAE (two skip connections) 0.4222 0.4217 0.0198 0.1519 0.1504 −0.0210
DINCAE (all skip connections) 0.3900 0.3895 0.0199 0.1383 0.1380 −0.0097
DINCAE (all skip connections – median) 0.3922 0.3918 0.0190 0.1342 0.1342 −0.0012
DINCAE (all skip connections and wider layers) 0.4005 0.4003 0.0147 0.1339 0.1328 0.0175
DINCAE (all skip connections and narrower layers) 0.3928 0.3915 0.0318 0.1379 0.1345 −0.0300
DINCAE (all skip connections and 5 conv. layers) 0.4603 0.4557 −0.0648 0.1396 0.1364 −0.0295
DINCAE (all skip connections and 3 conv. layers) 0.3991 0.3990 0.0083 0.1350 0.1346 −0.0101
DINCAE (all skip connections and average pooling) 0.3835 0.3834 0.0102 0.1251 0.1250 −0.0063

Figure 4. The original SST versus the reconstructed SST for the
cross-validation dataset. The color represents the estimated ex-
pected error standard deviation.

Training this network for 1000 epochs takes 4.5 h on a
GeForce GTX 1080 and Intel Core i7-7700 with the neu-
ral network library TensorFlow (Abadi et al., 2015). For a
trained network, reconstructing all 25 years takes only 8 s.
All computations are done in single precision.

Figure 4 shows a scatter plot of the true SST (withheld
during cross-validation) and the corresponding reconstructed
SST. The color represents the estimated expected error stan-
dard deviation of the reconstruction. Low error values are
expected to be closer to the dashed line. Reconstructed and
cross-validation SST tends to cluster relatively well around
the ideal dashed line. Typically the lower expected errors are
found more often near the dashed line than at the edge of the
cluster of points.

Figure 5. Scaled errors are computed as the difference between the
reconstructed SST and the actual measured SST (withheld during
cross-validation) divided by the expected standard deviation error.

To obtain a clearer idea of the reliability of the expected er-
ror, we computed the difference between the cross-validation
SST and the reconstructed SST divided by the expected error
standard deviation. A histogram of the scaled differences is
shown in Fig. 5. The scaled error follows the theoretical dis-
tribution relatively well. When a Gaussian pdf is fitted to the
histogram of the scaled error, one obtains a mean of −0.02
and a standard deviation 0.85 (both dimensionless), so that,
generally speaking, DINCAE is overestimating the expected
error by 15 %.

An interpolation technique, which is commonly used in
operational context, is optimal interpolation. This technique
is able to provide an expected error variance of the interpo-
lated fields based on a series of assumptions, in particular
that the errors are Gaussian distributed with a known co-
variance and zero mean. Given these assumptions, the error
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variance of the optimal interpolation algorithm is only found
to be weakly related to the observed RMSE in a study by
Pisano et al. (2016) using satellite sea surface temperature
in the Mediterranean Sea. The averaged results of DINCAE
overestimate the actual error by 15 %, which in this context
can be seen as an improvement.

Different variants of the neural network are tested in order
to optimize its structure. The number of skip connections has
a quite significant impact on the results. The cross-validation
RMSE is reduced from 0.4458 ◦C (no skip connections) to
0.4222 ◦C with two skip connections (layer 22 and 25 of Ta-
ble 1) and further to 0.3900 ◦C with all skip connections be-
tween the encoder and decoder layer of the same size. At
the same time, the RMSE relative to the used data (i.e., data
not reserved for cross-validation) measuring the degree of
smoothing is reduced from 0.2957 ◦C (no skip connections)
to 0.1383 ◦C with all skip connections.

Increasing the number of filters of the convolutional lay-
ers from 16, 24, 36, 54 to 16, 32, 48, 64 (with the input con-
volution layer fixed by 10 filters as it has to correspond to
the number of inputs) and increasing the number of neurons
of the bottleneck accordingly leads to a slight degradation
for the present case compared to the cross-validation dataset,
which indicates that the neural network starts to overfit if the
number of filters is increased. A subsequent test with nar-
rower convolutional layers of sizes 16, 22, 31 and 44 leads to
very similar but slightly worse results with 0.3928 ◦C.

The DINCAE neural network with an increasing or de-
creasing number of layers (5 or 3 convolutional layers) did
not improve the results. However, it is possible that the depth
of the neural network is dependent on the available training
dataset and that for more extensive data increasing the num-
ber of layers could have a positive effect.

Max pooling layers are commonly used in image clas-
sification problems (e.g., Simonyan and Zisserman, 2015;
Krizhevsky et al., 2012), where the strongest detected fea-
ture is passed from one layer to the next. However, the pur-
pose of this network here is rather different as we intend to
recover missing data, which requires us to spread the infor-
mation spatially. Therefore, we also tried the network with
average pooling instead of max pooling, which further re-
duced the reconstruction error to 0.3835 ◦C. This better per-
formance of average pooling can be related to the fact that
SST images do not generally have as abrupt gradients as typi-
cal images used for classification. Another way to look at this
is the fact that for a dynamical system in the linear regime,
different flow features (solutions to the underlying primitive
equations) coexist and contribute in an additive way to the
total flow.

For every time instance, we use the data from three time
instances in the reconstruction: the current day, as well as
the data from the previous and next days. As a variant of the
previous reconstruction experiment, we increased the num-
ber of time instances from 3 to 5, centered at the current time
instance. However, the cross-validation error for this experi-

Table 3. Comparison with the World Ocean Database for SST grid
points covered by clouds. The RMSE, CRMSE and bias are in de-
grees Celsius.

RMSE CRMSE Bias

DINEOF 1.1676 1.1102 −0.3616
DINCAE 1.1362 1.0879 −0.3278

ment is 0.433 ◦C, and the results are not improved. Increasing
the number of input features can aggravate the potential for
overfitting as the number of parameters in the neural network
is increased. Here the number of parameters is increased by
40 % in the first convolutional layer. A combination of convo-
lutional neural network with recurrent neural networks (like
long short-term memory, LSTM) might be a better way to
include the time dependencies.

In all cases the biases are relatively small and the present
discussion is essentially also valid when considering the cen-
tered RMSE (i.e., the RMSE difference when the bias is re-
moved). In the following, we only use DINCAE with all skip
connections and four convolutional layers with the number
of filters set to 16, 24, 36 and 54 and average pooling for
future comparison.

Figure 6 shows the SST reconstructions for 13 Octo-
ber 2009. The overall SST structure is reasonable in all re-
constructions. The cold water in the western part of the do-
main is better defined in the DINCAE reconstruction, and the
general position of the 21 ◦C isotherm agrees better with the
SST observations in the DINCAE reconstruction than with
the DINEOF results.

In some cases the DINCAE reconstruction also introduces
some artifacts as some zonal and meridional gradients near
the open boundaries (Fig. 7). This is probably due to the fact
that in the convolutional layers, zero padding is applied so
that the convolution operation does not change the size of
the arrays. As this issue is relatively localized at the border,
it is recommended that one chooses a slightly larger domain
than the primary domain of interest for the reconstruction.

To further quantify how well the reconstruction methods
could recover data under a cloud cover, we use in situ temper-
ature from the World Ocean Database 2018 (Locarini et al.,
2018). For every in situ grid point, the SST image with the
same time stamp (ignoring hour, minutes and seconds) is
interpolated to the nearest grid cell relative to the location
of the in situ observations. Only in situ observations corre-
sponding to a cloudy SST pixel are used in the following. In
total, there are 774 surface in situ observations. The depth of
the in situ observations should be between 0.5 and 1 m and
if there are multiple data points between this depth range,
the data point closest to the surface is used. As expected,
biases play a more important role now when comparing in
situ observations with reconstructed satellite data (Table 3).
DINCAE represented a small improvement relative to the DI-
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Figure 6. Panel (a) the original AVHRR SST, (b) AVHRR SST with additional clouds for cross-validation, (c) the DINCAE reconstruction,
(d) the expected error standard deviation (SD) of the DINCAE reconstruction, (e) the DINEOF reconstruction using all data, (f) the DINEOF
reconstruction using only the data from 2008 to 2009. All panels are in degrees Celsius and valid for the date 13 October 2009.

Figure 7. Panel (a) the original AVHRR SST, (b) AVHRR SST with additional clouds for cross-validation, (c) the DINCAE reconstruction,
(d) the expected error standard deviation (SD) of the DINCAE reconstruction, (e) the DINEOF reconstruction using all data, (f) the DINEOF
reconstruction using only the data from 2008 to 2009. All panels are in degrees Celsius and valid for the date 29 September 2009.
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Figure 8. Standard deviation computed around the seasonal average in degrees Celsius.

NEOF reconstruction confirming the results from the cross-
validation comparison.

In Fig. 8 the variability of the reconstructed SST dataset
is assessed. These figures represent the standard deviation
relative to a yearly-average climatology computed for the
original SST and the reconstructions from DINCAE and DI-
NEOF. For the original SST, the climatological mean SST
and the standard deviation were computed only using the
available data. The standard deviation derived from DINCAE
matches well with the standard deviation from the original
data, in particular in the interior of the domain, but the stan-
dard deviation is too large along the southern coast of France
and Corsica. The DINEOF standard deviation matches the
original SST standard deviation better in those areas but gen-
erally underestimates the SST standard deviation. Given the
fact that DINCAE tends to retain more variability in the re-
construction, it is thus remarkable that it still features a lower
RMSE despite the so-called double penalty effect (Gilleland
et al., 2009; Ebert et al., 2013), i.e., RMSE-based measures
tend to be lower for smoother fields with lower variability,
but this is not the case here.

6 Conclusions

This paper presents a consistent way to handle missing data
in satellite images for neural networks. Essentially, the neu-
ral network uses the measured data divided by its expected
error variance. Missing data are thus treated as data with an
infinitely large error variance. The cost function of the neural
network is chosen such that the network provides the recon-
struction but also the confidence of the reconstruction error
(quantified by the expected error variance). An over- or un-
derestimation of the expected error variance are both penal-
ized by maximizing the likelihood and assuming Gaussian
distributed errors. This approach can be easily generalized
to parametric probability distributions, in particular to log-

normal distributions for concentrations like remote sensed
chlorophyll a concentration or suspended sediment concen-
tration.

The presented reconstruction method DINCAE com-
pared favorably to the widely used DINEOF reconstruction
method, which is based on a truncated EOF analysis. For-
mally, there are similarities between an auto-encoder (com-
posed of just two fully connected layers) and an EOF projec-
tion followed by an EOF reconstruction (Chicco et al., 2014).
However, neural networks can represent nonlinear relation-
ships, which is not possible with an EOF approach. Both
methods were compared by cross-validation and the DIN-
CAE method resulted in an RMSE reduction from 0.46 to
0.38 ◦C.

The expected error for the reconstruction reflects well the
areas covered by the satellite measurements as well as the
areas with more intrinsic variability (like meanders of the
Northern Current). The expected error predicted by the neu-
ral network provides a good indication of the accuracy of the
reconstruction.

The accuracy of the reconstructed data under clouds was
also assessed by comparing the results to in situ observations
of the World Ocean Database 2018. Also compared to this
dataset, the RMSE of the DINCAE reconstruction is lower
than the corresponding results from DINEOF.

It is quite common that data analysis methods to recon-
struct missing data tend to smooth the available observations
in order to fill the area of missing observations. Therefore,
the temporal variability (relative to the seasonal cycle) of the
reconstructed sea surface temperature was computed from
the original data and from the reconstructed data using DIN-
CAE and DINEOF. The variability of the reconstructed SST
with DINEOF generally underestimated the variability in the
original dataset, but the variability of the DINCAE recon-
struction matched the variability of the original data rela-
tively well.
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The tests conducted in this paper show that DINCAE is
able to provide a good reconstruction of missing data in satel-
lite SST observations and retaining more variability than the
DINEOF method. In addition, the expected error variance of
the reconstruction is estimated by avoiding several assump-
tions (difficult to justify in practice) of other methods like
optimal interpolation.
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