[en] An overview of the current European capacity in terms of operational modeling of marine and coastal systems is presented. This overview is compiled from a survey conducted in 2018–2019 among members of EuroGOOS and its related network of Regional Operational Oceanographic Systems, addressing the purposes, context and technical specificities of operational modeling systems. Contributions to the survey were received from 49 organizations around Europe, which represent 104 operational model systems simulating mostly hydrodynamics, biogeochemistry and sea waves. The analysis of contributions highlights the strengths and weaknesses of the current capacity from an operational point of view, and leads to the formulation of recommendations toward the improvement of marine operational modeling services in Europe. In particular, this study highlights the heterogeneity of the European operational modeling capacity in terms of atmospheric and land boundary conditions, its limited deployment for biogeochemical phenomena, and a restricted use of data assimilation methods. In order to improve the accuracy of their simulations, model operators aim toward a further refinement of spatial resolution, and identify the quality and accessibility of forcing data and the suitability of observations for data assimilation as restricting factors. The described issues call for institutional integration efforts and promotion of good practices to homogenize operational marine model implementations, and to ensure that external forcing datasets, observation networks and process formulations and parameterizations are adequately developed to enable the deployment of high-level operational marine and coastal modeling services across Europe.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Capet, Arthur ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > MAST (Modeling for Aquatic Systems)
Fernandez, Vicente; European Global Ocean Observing System (EuroGOOS), Brussels, Belgium
Jun, She; Department of Research and Development, Danish Meteorological Institute, Copenhagen, Denmark
Dabrowski, Tomasz; Marine Institute, Ocean Science and Information Services, Galway, Ireland
Umgiesser, Georg; ISMAR-CNR, Venice, Italy
Joanna, Staneva; Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Geesthacht, Germany
Mészáros, Lőrinc; Deltares, Delft, Netherlands
Campuzano, Francisco; Mechanical Engineering Department, MARETEC–Marine Environment and Technology Center, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
Ursella, Laura; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
Nolan, Glenn; European Global Ocean Observing System (EuroGOOS), Brussels, Belgium
El Serafy, Ghada; Deltares, Delft, Netherlands
Language :
English
Title :
Operational Modeling Capacity in European Seas—An EuroGOOS Perspective and Recommendations for Improvement
Auclair F., Benshila R., Debreu L., Ducousso N., Dumas F., Marchesiello P., et al. (2018). Some Recent Developments around the CROCO Initiative for Complex Regional to Coastal Modeling. Hambourg. 1–47.
Bahurel P., Adragna F., Bell M., Jacq F., Johannessen J. A., She J., et al. (2010). Ocean monitoring and forecasting core services, the european MyOcean Example, in Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Vol. 1, eds Hall J., Harrison D. E., Stammer D., (Venice: ESA Publication WPP-306), 21–25. 10.5270/OceanObs09.pp.02
Barnard S., Barnier B., Beckmann A., Böning C. W., Coulibaly M., DeCuevas D., et al. (1997). DYNAMO: Dynamics of North Atlantic Models: Simulation and Assimilation With High Resolution Models. Technical Report, Institute of Oceanography, University of Kiel, Kiel, Germany.
Bell M., Lefèbvre M., Le Traon P.-Y., Smith N., Wilmer-Becker K., (2009). GODAE: the global ocean data assimilation experiment. Oceanography 22, 14–21. 10.5670/oceanog.2009.62
Bouffard J., Pascual A., Ruiz S., Faugère Y., Tintoré J., (2010). Coastal and mesoscale dynamics characterization using altimetry and gliders: a case study in the balearic sea. J. Geophys. Res. 115:79. 10.1029/2009JC006087
Campuzano F., Brito D., Juliano M., Fernandes R., de Pablo H., Neves R., (2016). Coupling watersheds, estuaries and regional ocean through numerical modelling for western iberia: a novel methodology. Ocean Dyn. 66, 1745–1756. 10.1007/s10236-016-1005-4
Capet A., Meysman F. J. R., Akoumianaki I., Soetaert K., Grégoire M., (2016). Integrating sediment biogeochemistry into 3D oceanic models: a study of benthic-pelagic coupling in the black sea. Ocean Model. 101, 83–100. 10.1016/j.ocemod.2016.03.006
CLMS (2019). Coastal Zone Monitoring—On Land. Available online at: https://land.copernicus.eu/user-corner/technical-library/coastal-zone-monitoring (accessed September 10, 2019).
De Mey-Frémaux P., Ayoub N., Barth A., Brewin R., Charria G., Campuzano F., et al. (2019). Model-observations synergy in the coastal ocean. Front. Mar. Sci. 6:436. 10.3389/fmars.2019.00436
Fujii Y., Rémy E., Zuo H., Oke P., Halliwell G., Gasparin F., et al. (2019). Observing system evaluation based on ocean data assimilation and prediction systems: on-going challenges and a future vision for designing and supporting ocean observational networks. Front. Mar. Sci. 6:417. 10.3389/fmars.2019.00417
Gehlen M., Barciela R., Bertino L., Brasseur P., Butenschön M., Chai F., et al. (2015). Building the capacity for forecasting marine biogeochemistry and ecosystems: recent advances and future developments. J. Oper. Oceanogr. 8, s168–s187. 10.1080/1755876X.2015.1022350
Graham J. A., O'Dea E., Holt J., Polton J., Hewitt H. T., Furner R., et al. (2018). Amm15: a new high-resolution nemo configuration for operational simulation of the european north/west shelf. Geosci. Model Dev. 11, 681–696. 10.5194/gmd-11-681-2018
Grall J., Chauvaud L., (2002). Marine eutrophication and benthos: the need for new approaches and concepts. Glob. Change Biol. 8, 813–830. 10.1046/j.1365-2486.2002.00519.x
Harcourt R., Sequeira A. M. M., Zhang X., Roquet F., Komatsu K., Heupel M., et al. (2019). Animal-Borne telemetry: an integral component of the ocean observing toolkit. Front. Mar. Sci. 6:326. 10.3389/fmars.2019.00326
Holland K. T., Elmore P. A., (2008). A review of heterogeneous sediments in coastal environments. Earth Sci. Rev. 89, 116–134. 10.1016/j.earscirev.2008.03.003
Holt J., Hyder P., Ashworth M., Harle J., Hewitt H. T., Liu H., et al. (2017). Prospects for improving the representation of coastal and shelf seas in global ocean models. Geosci. Model Dev. 10, 499–523. 10.5194/gmd-10-499-2017
Iglesias O., Lastras G., Souto C., Costa S., Canals M., (2014). Effects of coastal submarine canyons on tsunami propagation and impact. Mar. Geol. 350, 39–51. 10.1016/j.margeo.2014.01.013
Jacob B., Stanev E., Zhang Y., (2016). Local and remote response of the north sea dynamics to morphodynamic changes in the wadden sea. Ocean Dyn. 66, 671–690. 10.1007/s10236-016-0949-8
Janeković I., Mihanović H., Vilibić I., Tudor M., (2014). Extreme cooling and dense water formation estimates in open and coastal regions of the adriatic sea during the winter of 2012. J. Geophys. Res. C Oceans 119, 3200–3218. 10.1002/2014JC009865
Kara A. B., Hurlburt H. E., Wallcraft A. J., (2005). Black sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales. J. Clim. 18, 5266–5293. 10.1175/JCLI3573R2.1
Kourafalou V., Mey P. D., Hénaff M. L., Charria G., Edwards C., He R., et al. (2015a). Coastal ocean forecasting: system integration and evaluation. J. Oper. Oceanogr. 8, 137–146. 10.1080/1755876X.2015.1022336
Kourafalou V., Mey P. D., Staneva J., Ayoub N., Barth A., Chao Y., et al. (2015b). Coastal ocean forecasting: science foundation and user benefits. J. Oper. Oceanogr. 8, s147–s167. 10.1080/1755876X.2015.1022348
Le Traon P.-Y., Reppucci A., Alvarez Fanjul E., Aouf L., Behrens A., Belmonte M., et al. (2019). From observation to information and users: the copernicus marine service perspective. Front. Mar. Sci. 6:234. 10.3389/fmars.2019.00234
Lindstrom E., Gunn J., Fischer A., McCurdy A., Glover L. K., Members of Task Team for an Integrated Framework for Sustained Ocean Observing (2012). A Framework for Ocean Observing. Technical report, IOC.
Lindström G., Pers C., Rosberg J., Strömqvist J., Arheimer B., (2010). Development and testing of the HYPE (hydrological predictions for the environment) water quality model for different spatial scales. Hydrol. Res. 41, 295–319. 10.2166/nh.2010.007
Liu X., Guillas S., (2017). Dimension reduction for gaussian process emulation: an application to the influence of bathymetry on tsunami heights. SIAM/ASA J. Uncertain. Quantif. 5, 787–812. 10.1137/16M1090648
Liu Y., Kerkering H., Weisberg R. H., (eds.). (2015). Chapter 1–introduction to coastal ocean observing systems, in Coastal Ocean Observing Systems, (Boston, MA: Academic Press), 1–10.
Ludwig W., Dumont E., Meybeck M., Heussner S., (2009). River discharges of water and nutrients to the Mediterranean and Black sea: major drivers for ecosystem changes during past and future decades? Prog. Oceanogr. 80, 199–217. 10.1016/j.pocean.2009.02.001
Malone T. C., (2003). The coastal module of the global ocean observing system (GOOS): an assessment of current capabilities to detect change. Mar. Policy 27, 295–302. 10.1016/S0308-597X(03)00043-5
Malone T. C., Cole M., (2000). Toward a global scale coastal ocean observing system. Oceanography 13, 7–11. 10.5670/oceanog.2000.48
Malthus T. J., Mumby P. J., (2003). Remote sensing of the coastal zone: an overview and priorities for future research. Int. J. Remote Sens. 24, 2805–2815. 10.1080/0143116031000066954
March D., Boehme L., Tintoré J., Vélez-Belchi P. J., Godley B. J., (2019). Towards the integration of animal-borne instruments into global ocean observing systems. Glob. Change Biol. 26, 586–596. 10.1111/gcb.1490231675456
Mercator Ocean STAC (2016). CMEMS High Level Service Evolution Strategy. Technical report, Mercator Ocean.
Mészáros L., El Serafy G., (2018). Setting up a water quality ensemble forecast for coastal ecosystems: a case study of the southern North Sea. J. Hydroinform. 20, 846–863. 10.2166/hydro.2018.027
Oke P. R., Larnicol G., Jones E. M., Kourafalou V., Sperrevik A. K., Carse F., et al. (2015). Assessing the impact of observations on ocean forecasts and reanalyses: part 2, regional applications. J. Oper. Oceanogr. 8, s63–s79. 10.1080/1755876X.2015.1022080
Pein J. U., Grayek S., Schulz-Stellenfleth J., Stanev E. V., (2016). On the impact of salinity observations on state estimates in EMS estuary. Ocean Dyn. 66, 243–262. 10.1007/s10236-015-0920-0
Roemmich D., Alford M. H., Claustre H., Johnson K., King B., Moum J., et al. (2019). On the future of argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6:439. 10.3389/fmars.2019.00439
Schiller A., Mourre B., Drillet Y., Brassington G., (2018). An overview of operational oceanography, in New Frontiers in Operational Oceanography, eds Chassignet E., Pascual A., Tintoré J., Verron J., (GODAE Ocean View), 1–26. 10.17125/gov2018.ch01
Serafin K. A., Ruggiero P., Barnard P. L., Stockdon H. F., (2019). The influence of shelf bathymetry and beach topography on extreme total water levels: linking large-scale changes of the wave climate to local coastal hazards. Coast. Eng. 150, 1–17. 10.1016/j.coastaleng.2019.03.012
She J., (2018). Assessment of baltic sea observations for operational oceanography, in Proceedings of EuroGOOS 8th Conference, eds Buch E., Fernández V., Eparkhina D., Gorringe P., Nolan G., (Bergen), 79–87.
She J., Allen I., Buch E., Crise A., Johannessen J. A., Le Traon P.-Y., et al. (2016). Developing european operational oceanography for blue growth, climate change adaptation and mitigation, and ecosystem-based management. Ocean Sci. 12, 953–976. 10.5194/os-12-953-2016
She J., Buch E., Nolan G., (2017). Report on Lessons Learned From OSSE Experiments in Support of the Definition of Requirements to an in-situ Observing System. Technical Report report D2.4.1, EuroGOOS-CMEMS.
van Apeldoorn D., Bouwman L., (2014). D4.6: SES Land-Based Runoff and Nutrient Load Data (1980–2000). Technical report, Policy-Oriented Marine Environmental Research in the Southern EUropean Seas FP7 Project.
Williams C. N., Cornford S. L., Jordan T. M., Dowdeswell J. A., Siegert M. J., Clark C. D., et al. (2017). Generating synthetic fjord bathymetry for coastal greenland. Cryosphere 11, 363–380. 10.5194/tc-11-363-2017
Zhu J., (2011). Overview of regional and coastal systems, in Operational Oceanography in the 21st Century, eds Schiller A., Brassington G. B., (Dordrecht: Springer Netherlands), 413–439.