Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., American Heart Association Statistics Committee and Stroke Statistics Subcommittee, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:1 (2013), e6–e245, 10.1161/CIR.0b013e31828124ad.
Hjortnaes, J., Keegan, J., Bruneval, P., Schwartz, E., Schoen, F.J., Carpentier, A., Levine, R.A., Hagège, A., Aikawa, E., Comparative histopathological analysis of mitral valves in Barlow disease and fibroelastic deficiency. Semin. Thorac. Cardiovasc. Surg. 28:4 (2016), 757–767, 10.1053/j.semtcvs.2016.08.015.
Freed, L.A., Levy, D., Levine, R.A., Larson, M.G., Evans, J.C., et al. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 341:1 (1999), 1–7, 10.1056/NEJM199907013410101.
Spartalis, M., Tzatzaki, E., Spartalis, E., Athanasiou, A., Moris, D., et al. Mitral valve prolapse: an underestimated cause of sudden cardiac death-a current review of the literature. J. Thorac. Dis. 9:12 (2017), 5390–5398, 10.21037/jtd.2017.11.14.
Perrucci, G.L., Zanobini, M., Gripari, P., Songia, P., Alshaikh, B., et al. Pathophysiology of aortic stenosis and mitral regurgitation. Compr. Physiol. 7:3 (2017), 799–818, 10.1002/cphy.c160020.
Driesbaugh, K.H., Branchetti, E., Grau, J.B., Keeney, S.J., Glass, K., et al. Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation. J. Mol. Cell. Cardiol. 115 (2018), 94–103, 10.1016/j.yjmcc.2017.12.014.
Geirsson, A., Singh, M., Ali, R., Abbas, H., Li, W., et al. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers. Circulation 126:11 Suppl 1 (2012), S189–S197, 10.1161/CIRCULATIONAHA.111.082610.
Hulin, A., Deroanne, C.F., Lambert, C.A., Dumont, B., Castronovo, V., et al. Metallothionein-dependent up-regulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc. Res. 93:3 (2012), 480–489 (doi: 0.1093/cvr/cvr337).
Hulin, A., Deroanne, C., Lambert, C., Defraigne, J.O., Nusgens, B., et al. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Cardiovasc. Pathol. 22:4 (2013), 245–250, 10.1016/j.carpath.2012.11.001.
Ng, C.M., Cheng, A., Myers, L.A., Martinez-Murillo, F., Jie, C., et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J. Clin. Invest. 114:11 (2004), 1586–1592, 10.1172/JCI22715.
Loeys, B.L., Chen, J., Neptune, E.R., Judge, D.P., Podowski, M., et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37:3 (2005), 275–281, 10.1038/ng1511.
Merryman, W.D., Lukoff, H.D., Long, R.A., Engelmayr, G.C. Jr., Hopkins, R.A., et al. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16:5 (2007), 268–276, 10.1016/j.carpath.2007.03.006.
Gupta, V., Tseng, H., Lawrence, B.D., Grande-Allen, K.J., Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomater. 5:2 (2009), 531–540, 10.1016/j.actbio.2008.10.009.
Balachandran, K., Sucosky, P., Jo, H., Yoganathan, A.P., Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296:3 (2009), H756–H764, 10.1152/ajpheart.00900.2008.
Lacerda, C.M., Kisiday, J., Johnson, B., Orton, E.C., Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves. Am. J. Physiol. Heart Circ. Physiol. 302:10 (2012), H1983–H1990, 10.1152/ajpheart.00987.2011.
Waxman, A.S., Kornreich, B.G., Gould, R.A., Moïse, N.S., Butcher, J.T., Interactions between TGFβ1 and cyclic strain in modulation of myofibroblastic differentiation of canine mitral valve interstitial cells in 3D culture. J. Vet. Cardiol. 14:1 (2012), 211–221, 10.1016/j.jvc.2012.02.006.
Barnette, D.N., Hulin, A., Ahmed, A.S., Colige, A.C., Azhar, M., et al. TGFβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J. Mol. Cell. Cardiol. 65 (2013), 137–146, 10.1016/j.yjmcc.2013.10.007.
Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57:5 (2000), 976–983 (PMID: 10779382).
Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., Stradley, D.A., et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273:29 (1998), 18623–18632, 10.1074/jbc.273.29.18623.
Hayashi, K., Watanabe, B., Nakagawa, Y., Minami, S., Morita, T., RPEL proteins are the molecular targets for CCG-1423, an inhibitor of Rho signaling. PLoS One, 9(2), 2014, e89016, 10.1371/journal.pone.0089016.
Deroanne, C.F., Hamelryckx, D., Ho, T.T., Lambert, C.A., Catroux, P., et al. Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J. Cell Sci. 118 (2005), 1173–1183, 10.1242/jcs.01707.
Ho, T.T., Merajver, S.D., Lapière, C.M., Nusgens, B.V., Deroanne, C.F., RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J. Biol. Chem. 283:31 (2008), 21588–21598, 10.1074/jbc.M710033200.
Ho, G.T.T., Stultiens, A., Dubail, J., Lapière, C.M., Nusgens, B.V., et al. RhoGDIα-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis. Mol. Biol. Cell 22:17 (2011), 3263–3275, 10.1091/mbc.E11-01-0020.
Pagnozzi, L.A., Butcher, J.T., Mechanotransduction mechanisms in mitral valve physiology and disease pathogenesis. Front. Cardiovasc. Med., 4, 2017, 83, 10.3389/fcmv.2017.0008323.
Stephens, E.H., Durst, C.A., Swanson, J.C., Grande-Allen, K.J., Ingels, N.B., et al. Functional coupling of valvular interstitial cells and collagen via α2β1 integrins in the mitral leaflet. Cell. Mol. Bioeng. 3:4 (2010), 428–437, 10.1007/s12195-010-0139-6.
Ayoub, S., Lee, C.H., Driesbaugh, K.H., Anselmo, W., Hughes, C.T., et al. Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J. R. Soc. Interface, 14, 2017, 135 (pii: 20170580) https://doi.org/10.1098/rsif.2017.0580.
Aupperle, H., März, I., Thielebein, J., Schoon, H.A., Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves. J. Comp. Pathol. 139:2–3 (2008), 97–107, 10.1016/j.jcpa.2008.05.007.
Neptune, E.R., Frischmeyer, P.A., Arking, D.E., Myers, L., Bunton, T.E., et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33:3 (2003), 407–411, 10.1038/ng1116.
Thalji, N.M., Hagler, M.A., Zhang, H., Casaclang-Verzosa, G., Nair, A.A., et al. Nonbiased molecular screening identifies novel molecular regulators of fibrogenic and proliferative signaling in myxomatous mitral malve misease. Circ. Cardiovasc. Genet. 8:3 (2015), 516–528, 10.1161/CIRCGENETICS.114.000921.
Rabkin, E., Aikawa, M., Stone, J.R., Fukumoto, Y., Libby, P., et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:21 (2001), 2525–2532 (PMID: 11714645).
Balachandran, K., Konduri, S., Sucosky, P., Jo, H., Yoganathan, A.P., An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:11 (2006), 1655–1665, 10.1007/s10439-006-9167-8.
Merryman, W.D., What modulates the aortic valve interstitial cell phenotype?. Future Cardiol.(3), 2008, 247–252, 10.2217/14796678.4.3.247.
Chaqour, B., Goppelt-Struebe, M., Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 273:16 (2006), 3639–3649, 10.1111/j.1742-4658.2006.05360.x.
Ramazani, Y., Knops, N., Elmonem, M.A., Nguyen, T.Q., Arcolino, F.O., et al. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 68–69 (2018), 44–66, 10.1016/j.matbio.2018.03.007.
Leask, A., Parapuram, S.K., Shi-Wen, X., Abraham, D.J., Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease?. J. Cell Commun. Signal. 3:2 (2009), 89–94, 10.1007/s12079-009-0037-7.
Hagler, M.A., Hadley, T.M., Zhang, H., Mehra, K., Roos, C.M., et al. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc. Res. 99:1 (2013), 175–184, 10.1093/cvr/cvt083.
Rizzo, S., Basso, C., Lazzarini, E., Celeghin, R., Paolin, A., et al. TGF-beta1 pathway activation and adherens junction molecular pattern in non-syndromic mitral valve prolapse. Cardiovasc. Pathol. 24:6 (2015), 359–367, 10.1016/j.carpath.2015.07.009.
Twigg, S.M., Joly, A.H., Chen, M.M., Tsubaki, J., Kim, H.S., et al. Connective tissue growth factor/IGF-binding protein-related protein-2 is a mediator in the induction of fibronectin by advanced glycosylation end-products in human dermal fibroblasts. Endocrinology 143 (2002), 1260–1269, 10.1210/endo.143.4.8741.
Matthews, B.D., Overby, D.R., Mannix, R., Ingber, D.E., Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119 (2006), 508–518, 10.1242/jcs.02760.
Hall, A., Rho family GTPases. Biochem. Soc. Trans. 40:6 (2012), 1378–1382, 10.1042/BST20120103.
Schaefer, A., Reinhard, N.R., Hordijk, P.L., Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases, 5(2), 2014, 6, 10.4161/21541248.2014.968004.
Ridley, A.J., Open questions: what about the “other” Rho GTPases?. BMC Biol., 14, 2016, 64, 10.1186/s12915-016-0289-7.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., et al. Role of YAP/TAZ in mechanotransduction. Nature 474 (2011), 179–183, 10.1038/nature10137.
Wang, D.Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc. Natl. Acad. Sci. U. S. A. 99:23 (2002), 14855–14860, 10.1073/pnas.2225261.499.
Miralles, F., Posern, G., Zaromytidou, A., Treisman, R., Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 113 (2003), 329–342, 10.1016/S0092-8674(03)00278-2.
Muehlich, S., Cicha, I., Garlichs, C.D., Krueger, B., Posern, G., et al. Actin-dependent regulation of connective tissue growth factor. Am. J. Phys. Cell Physiol. 292:5 (2007), C1732–C1738, 10.1152/ajpcell.00552.2006.
Small, E.M., Thatcher, J.E., Sutherland, L.B., Kinoshita, H., Gerard, R.D., et al. Myocardin-related transcription factor-A controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ. Res. 107 (2010), 294–304, 10.1161/CIRCRESAHA.110.223172.
Panayiotou, R., Miralles, F., Pawlowski, R., Diring, J., Flynn, H.R., et al. Phosphorylation acts positively and negatively to regulate MRTF-A-A subcellular localisation and activity. Elife, 5, 2016, 10.7554/eLife.15460 pii: e15460.
Hutchings, K.M., Lisabeth, E.M., Rajeswaran, W., Wilson, M.W., Sorenson, R.J., et al. Pharmacokinetic optimitzation of CCG-203971: novel inhibitors of the Rho/MRTF-A/SRF transcriptional pathway as potential antifibrotic therapeutics for systemic scleroderma. Bioorg. Med. Chem. Lett. 27:8 (2017), 1744–1749, 10.1016/j.bmcl.2017.02.070.