scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Merryman, W.D., Youn, I., Lukoff, H.D., Krueger, P.M., Guilak, F., et al. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290:1 (2006), H224–H231, 10.1152/ajpheart.00521.2005.
Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., American Heart Association Statistics Committee and Stroke Statistics Subcommittee, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:1 (2013), e6–e245, 10.1161/CIR.0b013e31828124ad.
Hjortnaes, J., Keegan, J., Bruneval, P., Schwartz, E., Schoen, F.J., Carpentier, A., Levine, R.A., Hagège, A., Aikawa, E., Comparative histopathological analysis of mitral valves in Barlow disease and fibroelastic deficiency. Semin. Thorac. Cardiovasc. Surg. 28:4 (2016), 757–767, 10.1053/j.semtcvs.2016.08.015.
Freed, L.A., Levy, D., Levine, R.A., Larson, M.G., Evans, J.C., et al. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 341:1 (1999), 1–7, 10.1056/NEJM199907013410101.
Spartalis, M., Tzatzaki, E., Spartalis, E., Athanasiou, A., Moris, D., et al. Mitral valve prolapse: an underestimated cause of sudden cardiac death-a current review of the literature. J. Thorac. Dis. 9:12 (2017), 5390–5398, 10.21037/jtd.2017.11.14.
Perrucci, G.L., Zanobini, M., Gripari, P., Songia, P., Alshaikh, B., et al. Pathophysiology of aortic stenosis and mitral regurgitation. Compr. Physiol. 7:3 (2017), 799–818, 10.1002/cphy.c160020.
Driesbaugh, K.H., Branchetti, E., Grau, J.B., Keeney, S.J., Glass, K., et al. Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation. J. Mol. Cell. Cardiol. 115 (2018), 94–103, 10.1016/j.yjmcc.2017.12.014.
Geirsson, A., Singh, M., Ali, R., Abbas, H., Li, W., et al. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers. Circulation 126:11 Suppl 1 (2012), S189–S197, 10.1161/CIRCULATIONAHA.111.082610.
Hulin, A., Deroanne, C.F., Lambert, C.A., Dumont, B., Castronovo, V., et al. Metallothionein-dependent up-regulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc. Res. 93:3 (2012), 480–489 (doi: 0.1093/cvr/cvr337).
Hulin, A., Deroanne, C., Lambert, C., Defraigne, J.O., Nusgens, B., et al. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Cardiovasc. Pathol. 22:4 (2013), 245–250, 10.1016/j.carpath.2012.11.001.
Ng, C.M., Cheng, A., Myers, L.A., Martinez-Murillo, F., Jie, C., et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J. Clin. Invest. 114:11 (2004), 1586–1592, 10.1172/JCI22715.
Loeys, B.L., Chen, J., Neptune, E.R., Judge, D.P., Podowski, M., et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37:3 (2005), 275–281, 10.1038/ng1511.
Merryman, W.D., Lukoff, H.D., Long, R.A., Engelmayr, G.C. Jr., Hopkins, R.A., et al. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16:5 (2007), 268–276, 10.1016/j.carpath.2007.03.006.
Gupta, V., Tseng, H., Lawrence, B.D., Grande-Allen, K.J., Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomater. 5:2 (2009), 531–540, 10.1016/j.actbio.2008.10.009.
Balachandran, K., Sucosky, P., Jo, H., Yoganathan, A.P., Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296:3 (2009), H756–H764, 10.1152/ajpheart.00900.2008.
Lacerda, C.M., Kisiday, J., Johnson, B., Orton, E.C., Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves. Am. J. Physiol. Heart Circ. Physiol. 302:10 (2012), H1983–H1990, 10.1152/ajpheart.00987.2011.
Waxman, A.S., Kornreich, B.G., Gould, R.A., Moïse, N.S., Butcher, J.T., Interactions between TGFβ1 and cyclic strain in modulation of myofibroblastic differentiation of canine mitral valve interstitial cells in 3D culture. J. Vet. Cardiol. 14:1 (2012), 211–221, 10.1016/j.jvc.2012.02.006.
Barnette, D.N., Hulin, A., Ahmed, A.S., Colige, A.C., Azhar, M., et al. TGFβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J. Mol. Cell. Cardiol. 65 (2013), 137–146, 10.1016/j.yjmcc.2013.10.007.
Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57:5 (2000), 976–983 (PMID: 10779382).
Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., Stradley, D.A., et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273:29 (1998), 18623–18632, 10.1074/jbc.273.29.18623.
Hayashi, K., Watanabe, B., Nakagawa, Y., Minami, S., Morita, T., RPEL proteins are the molecular targets for CCG-1423, an inhibitor of Rho signaling. PLoS One, 9(2), 2014, e89016, 10.1371/journal.pone.0089016.
Deroanne, C.F., Hamelryckx, D., Ho, T.T., Lambert, C.A., Catroux, P., et al. Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J. Cell Sci. 118 (2005), 1173–1183, 10.1242/jcs.01707.
Ho, T.T., Merajver, S.D., Lapière, C.M., Nusgens, B.V., Deroanne, C.F., RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J. Biol. Chem. 283:31 (2008), 21588–21598, 10.1074/jbc.M710033200.
Ho, G.T.T., Stultiens, A., Dubail, J., Lapière, C.M., Nusgens, B.V., et al. RhoGDIα-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis. Mol. Biol. Cell 22:17 (2011), 3263–3275, 10.1091/mbc.E11-01-0020.
Pagnozzi, L.A., Butcher, J.T., Mechanotransduction mechanisms in mitral valve physiology and disease pathogenesis. Front. Cardiovasc. Med., 4, 2017, 83, 10.3389/fcmv.2017.0008323.
Stephens, E.H., Durst, C.A., Swanson, J.C., Grande-Allen, K.J., Ingels, N.B., et al. Functional coupling of valvular interstitial cells and collagen via α2β1 integrins in the mitral leaflet. Cell. Mol. Bioeng. 3:4 (2010), 428–437, 10.1007/s12195-010-0139-6.
Ayoub, S., Lee, C.H., Driesbaugh, K.H., Anselmo, W., Hughes, C.T., et al. Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J. R. Soc. Interface, 14, 2017, 135 (pii: 20170580) https://doi.org/10.1098/rsif.2017.0580.
Aupperle, H., März, I., Thielebein, J., Schoon, H.A., Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves. J. Comp. Pathol. 139:2–3 (2008), 97–107, 10.1016/j.jcpa.2008.05.007.
Neptune, E.R., Frischmeyer, P.A., Arking, D.E., Myers, L., Bunton, T.E., et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33:3 (2003), 407–411, 10.1038/ng1116.
Thalji, N.M., Hagler, M.A., Zhang, H., Casaclang-Verzosa, G., Nair, A.A., et al. Nonbiased molecular screening identifies novel molecular regulators of fibrogenic and proliferative signaling in myxomatous mitral malve misease. Circ. Cardiovasc. Genet. 8:3 (2015), 516–528, 10.1161/CIRCGENETICS.114.000921.
Rabkin, E., Aikawa, M., Stone, J.R., Fukumoto, Y., Libby, P., et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:21 (2001), 2525–2532 (PMID: 11714645).
Balachandran, K., Konduri, S., Sucosky, P., Jo, H., Yoganathan, A.P., An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:11 (2006), 1655–1665, 10.1007/s10439-006-9167-8.
Merryman, W.D., What modulates the aortic valve interstitial cell phenotype?. Future Cardiol.(3), 2008, 247–252, 10.2217/14796678.4.3.247.
Chaqour, B., Goppelt-Struebe, M., Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 273:16 (2006), 3639–3649, 10.1111/j.1742-4658.2006.05360.x.
Ramazani, Y., Knops, N., Elmonem, M.A., Nguyen, T.Q., Arcolino, F.O., et al. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 68–69 (2018), 44–66, 10.1016/j.matbio.2018.03.007.
Leask, A., Parapuram, S.K., Shi-Wen, X., Abraham, D.J., Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease?. J. Cell Commun. Signal. 3:2 (2009), 89–94, 10.1007/s12079-009-0037-7.
Hagler, M.A., Hadley, T.M., Zhang, H., Mehra, K., Roos, C.M., et al. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc. Res. 99:1 (2013), 175–184, 10.1093/cvr/cvt083.
Rizzo, S., Basso, C., Lazzarini, E., Celeghin, R., Paolin, A., et al. TGF-beta1 pathway activation and adherens junction molecular pattern in non-syndromic mitral valve prolapse. Cardiovasc. Pathol. 24:6 (2015), 359–367, 10.1016/j.carpath.2015.07.009.
Twigg, S.M., Joly, A.H., Chen, M.M., Tsubaki, J., Kim, H.S., et al. Connective tissue growth factor/IGF-binding protein-related protein-2 is a mediator in the induction of fibronectin by advanced glycosylation end-products in human dermal fibroblasts. Endocrinology 143 (2002), 1260–1269, 10.1210/endo.143.4.8741.
Matthews, B.D., Overby, D.R., Mannix, R., Ingber, D.E., Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119 (2006), 508–518, 10.1242/jcs.02760.
Hall, A., Rho family GTPases. Biochem. Soc. Trans. 40:6 (2012), 1378–1382, 10.1042/BST20120103.
Schaefer, A., Reinhard, N.R., Hordijk, P.L., Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases, 5(2), 2014, 6, 10.4161/21541248.2014.968004.
Ridley, A.J., Open questions: what about the “other” Rho GTPases?. BMC Biol., 14, 2016, 64, 10.1186/s12915-016-0289-7.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., et al. Role of YAP/TAZ in mechanotransduction. Nature 474 (2011), 179–183, 10.1038/nature10137.
Wang, D.Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc. Natl. Acad. Sci. U. S. A. 99:23 (2002), 14855–14860, 10.1073/pnas.2225261.499.
Miralles, F., Posern, G., Zaromytidou, A., Treisman, R., Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 113 (2003), 329–342, 10.1016/S0092-8674(03)00278-2.
Muehlich, S., Cicha, I., Garlichs, C.D., Krueger, B., Posern, G., et al. Actin-dependent regulation of connective tissue growth factor. Am. J. Phys. Cell Physiol. 292:5 (2007), C1732–C1738, 10.1152/ajpcell.00552.2006.
Small, E.M., Thatcher, J.E., Sutherland, L.B., Kinoshita, H., Gerard, R.D., et al. Myocardin-related transcription factor-A controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ. Res. 107 (2010), 294–304, 10.1161/CIRCRESAHA.110.223172.
Panayiotou, R., Miralles, F., Pawlowski, R., Diring, J., Flynn, H.R., et al. Phosphorylation acts positively and negatively to regulate MRTF-A-A subcellular localisation and activity. Elife, 5, 2016, 10.7554/eLife.15460 pii: e15460.
Hutchings, K.M., Lisabeth, E.M., Rajeswaran, W., Wilson, M.W., Sorenson, R.J., et al. Pharmacokinetic optimitzation of CCG-203971: novel inhibitors of the Rho/MRTF-A/SRF transcriptional pathway as potential antifibrotic therapeutics for systemic scleroderma. Bioorg. Med. Chem. Lett. 27:8 (2017), 1744–1749, 10.1016/j.bmcl.2017.02.070.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.