[en] Thiamine (vitamin B1) is an essential molecule for all living organisms. It is the precursor for several phosphorylated derivatives, the most important being the coenzyme thiamine diphosphate (ThDP). Thiamine is transported into cells by specific transporters and pyrophosphorylated to ThDP in the cytosol. ThDP is an essential cofactor for cellular oxidative energy metabolism. Thiamine deficiency disorders lead to severe nervous system lesion and cardiac failure. ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate and adenosine thiamine triphosphate, with unknown function but present in all three kingdoms of life.
Research Center/Unit :
Giga-Neurosciences - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bettendorff, Lucien ; Université de Liège - ULiège > Neurosciences-Neurophysiology
Wins, Pierre ; Université de Liège - ULiège > Département des sciences cliniques > Département des sciences cliniques
Language :
English
Title :
Biochemistry of thiamine and thiamine phosphate compounds
Publication date :
2021
Main work title :
Encyclopedia of Biological Chemistry, 3rd Edition, vol 1
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abdou, E., Hazell, A.S., 2014. Thiamine deficiency: An update of pathophysiologic mechanisms and future therapeutic considerations. Neurochemical Research.
Aleshin, V.A., Mkrtchyan, G.V., Bunik, V.I., 2019. Mechanisms of non-coenzyme action of thiamine: Protein targets and medical significance. Biochemistry 84 (8), 829-850. doi:10.1134/S0006297919080017.
Alfadhel, M., Almuntashri, M., Jadah, R.H., et al., 2013. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: A retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet Journal of Rare Diseases 8, 83. doi:10.1186/1750-1172-8-83.
Begley, T.P., Ealick, S.E., McLafferty, F.W., 2012. Thiamin biosynthesis: Still yielding fascinating biological chemistry. Biochemical Society Transactions 40 (3), 555-560.
Bettendorff, L., Wins, P., 2009. Thiamin diphosphate in biological chemistry: New aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. The FEBS Journal 276, 2917-2925.
Bettendorff, L., Wirtzfeld, B., Makarchikov, A.F., et al., 2007. Discovery of a natural thiamine adenine nucleotide. Nature Chemical Biology 3 (4), 211-212.
Bettendorff, L., Wins, P., 2013. Thiamine triphosphatase and the CYTH superfamily of proteins. The FEBS Journal 280 (24), 6443-6455. doi:10.1111/febs.12498.
Breslow, R., 1958. On the mechanism of thiamine action. IV.1 Evidence from studies on model systems. Journal of the American Chemical Society 80, 3719-3726.
Butterworth, R.F., 2003. Thiamin deficiency and brain disorders. Nutrition Research Reviews 16 (2), 277-284.
Carpenter, K.J., 2012. The discovery of thiamin. Annals of Nutrition & Metabolism 61 (3), 219-223. doi:10.1159/000343109.
Costelloe, S.J., Ward, J.M., Dalby, P.A., 2008. Evolutionary analysis of the tdependent enzyme family. Journal of Molecular Evolution 66 (1), 36-49.
Delvaux, D., Kerff, F., Murty, M.R., et al., 2013. Structural determinants of specificity and catalytic mechanism in mammalian 25-kDa thiamine triphosphatase. Biochimica Biophysica Acta 1830 (10), 4513-4523.
Foulon, V., Antonenkov, V.D., Croes, K., et al., 1999. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphatedependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3- methyl-branched fatty acids. Proceedings of the National Academy of Sciences of the United States of America 96, 10039-10044.
Fraccascia, P., Casteels, M., De Schryver, E., Van Veldhoven, P.P., 2011. Role of thiamine pyrophosphate in oligomerisation, functioning and import of peroxisomal 2-hydroxyacyl-CoA lyase. Biochimica Biophysica Acta 1814 (10), 1226-1233.
Frédérich, M., Delvaux, D., Gigliobianco, T., et al., 2009. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. The FEBS Journal 276 (12), 3256-3268.
Gangolf, M., Czerniecki, J., Radermecker, M., et al., 2010. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One 5 (10), e13616.
Gigliobianco, T., Gangolf, M., Lakaye, B., et al., 2013. An alternative role of FoF1-ATP synthase in escherichia coli: Synthesis of thiamine triphosphate. Scientific Reports 3, 1071.
Harris, R.A., Zhang, B., Goodwin, G.W., et al., 1990. Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Advances in Enzyme Regulation 30, 245-263.
Hawkins, C.F., Borges, A., Perham, R.N., 1989. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Letters 255 (1), 77-82. doi:10.1016/0014-5793(89)81064-6.
Hopmann, R.F.W., 1982. The alkali-induced transformations of thiamin. Annals of the New York Academy of Sciences 378, 32-50.
Jenkins, A.H., Schyns, G., Potot, S., Sun, G., Begley, T.P., 2007. A new thiamin salvage pathway. Nature Chemical Biology 3 (8), 492-497.
Johnson, C.R., Fischer, P.R., Thacher, T.D., et al., 2019. Thiamin deficiency in low- and middle-income countries: Disorders, prevalences, previous interventions and current recommendations. Nutrition and Health 25 (2), 127-151. doi:10.1177/0260106019830847.
Jordan, F., Nemeria, N., Gerfen, G., 2019. Human 2-oxoglutarate dehydrogenase and 2-oxoadipate dehydrogenase both generate superoxide/H2O2 in a side reaction and each could contribute to oxidative stress in mitochondria. Neurochemical Research 44 (10), 2325-2335. doi:10.1007/s11064-019-02765-w.
Kawasaki, T., 1992. Vitamin B1: Thiamine. In: De Leenheer, A.P., Lambert, W.E., Nelis, H.J. (Eds.), Modern Chromatographic Analysis of Vitamins, second ed. New York: Marcel Dekker, Inc, pp. 319-354.
Kluger, R., Tittmann, K., 2008. Thiamin diphosphate catalysis: Enzymic and nonenzymic covalent intermediates. Chemical Reviews 108 (6), 1797-1833.
Knyihar-Csillik, E., Bezzegh, A., Boti, S., Csillik, B., 1986. Thiamine monophosphatase: A genuine marker for transganglionic regulation of primary sensory neurons. Journal of Histochemistry and Cytochemistry 34 (3), 363-371.
Lakaye, B., Wirtzfeld, B., Wins, P., Grisar, T., Bettendorff, L., 2004. Thiamine triphosphate, A new signal required for optimal growth of escherichia coli during amino acid starvation. Journal of Biological Chemistry 279 (17), 17142-17147.
Lindhurst, M.J., Fiermonte, G., Song, S., et al., 2006. Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proceedings of the National Academy of Sciences of the United States of America 103 (43), 15927-15932.
Lockman, P.R., Mumper, R.J., Allen, D.D., 2003. Evaluation of blood-brain barrier thiamine efflux using the in situ rat brain perfusion method. Journal of Neurochemistry 86 (3), 627-634.
Makarchikov, A.F., Lakaye, B., Gulyai, I.E., et al., 2003. Thiamine triphosphate and thiamine triphosphatase activities: From bacteria to mammals. Cellular and Molecular Life Sciences 60 (7), 1477-1488.
Makarchikov, A.F., Brans, A., Bettendorff, L., 2007. Thiamine diphosphate adenylyl transferase from E. coli: Functional characterization of the enzyme synthesizing adenosine thiamine triphosphate. BMC Biochemistry 8, 17.
Manzetti, S., Zhang, J., van der Spoel, D., 2014. Thiamin function, metabolism, uptake, and transport. Biochemistry 53 (5), 821-835.
Marcé-Grau, A., Martí-Sánchez, L., Baide-Mairena, H., Ortigoza-Escobar, J.D., Pérez-Dueõas, B., 2019. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. Journal of Inherited Metabolic Disease 42 (4), 581-597. doi:10.1002/jimd.12125.
Mastrogiacomo, F., Bettendorff, L., Grisar, T., Kish, S.J., 1996. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease. Annals of Neurology 39 (5), 585-591.
Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., et al., 2015. Molecular mechanisms of the non-coenzyme action of thiamin in brain: Biochemical, structural and pathway analysis. Scientific Reports 5, 12583. doi:10.1038/srep12583.
Nemeria, N.S., Chakraborty, S., Balakrishnan, A., Jordan, F., 2009. Reaction mechanisms of thiamin diphosphate enzymes: Defining states of ionization and tautomerization of the cofactor at individual steps. The FEBS Journal 276 (9), 2432-2446.
Nghiêm, H.O., Bettendorff, L., Changeux, J.P., 2000. Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor. The FASEB Journal 14 (3), 543-554.
Nosaka, K., Onozuka, M., Nishino, H., et al., 1999. Molecular cloning and expression of a mouse thiamin pyrophosphokinase cDNA. Journal of Biological Chemistry 274 (48), 34129-34133.
Ortigoza-Escobar, J.D., Molero-Luis, M., Arias, A., et al., 2016. Treatment of genetic defects of thiamine transport and metabolism. Expert Review of Neurotherapeutics 16 (7), 755-763. doi:10.1080/14737175.2016.1187562.
Padhi, S., Pradhan, M., Bung, N., Roy, A., Bulusu, G., 2019. TPP riboswitch aptamer: Role of Mg2+ ions, ligand unbinding, and allostery. Journalof Molecular Graphics & Modelling 88, 282-291. doi:10.1016/j.jmgm.2019.01.015.
Pan, X., Gong, N., Zhao, J., et al., 2010. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133, 1342-1351.
Pan, X., Fei, G., Lu, J., et al., 2016. Measurement of blood thiamine metabolites for Alzheimer's disease diagnosis. EBioMedicine 3, 155-162. doi:10.1016/j.ebiom.2015.11.039.
Sambon, M., Napp, A., Demelenne, A., et al., 2019. Thiamine and benfotiamine protect neuroblastoma cells against paraquat and ß-amyloid toxicity by a coenzyme-independent mechanism. Heliyon 5 (5), e01710.
Subramanian, V.S., Marchant, J.S., Said, H.M., 2006. Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via the human thiamine transporter-2 (hTHTR2): Biotin is not a substrate for hTHTR2. American Journal of Physiology-Cell Physiology 291, C851-C859.
Tapias, V., Jainuddin, S., Ahuja, M., et al., 2018. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Human Molecular Genetics 27 (16), 2874-2892. doi:10.1093/hmg/ddy201.
Volvert, M.L., Seyen, S., Piette, M., et al., 2008. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacology 8 (1), 10.
Whitfield, K.C., Bourassa, M.W., Adamolekun, B., et al., 2018. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Annals of the New York Academy of Sciences 1430 (1), 3-43. doi:10.1111/nyas.13919.
Zeng, W.Q., Al-Yamani, E., Acierno Jr., J.S., et al., 2005. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. American Journal of Human Genetics 77 (1), 16-26.
Zhang, K., Bian, J., Deng, Y., et al., 2016. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin. Nature Microbiology 2, 16213. doi:10.1038/nmicrobiol.2016.213.
Carpenter, K.J., 2000. Beriberi, White Rice, and Vitamin B: A Disease, A Cause, and A Cure. Berkeley, CA: University of California Press.
McCandless, D.W., 2010. Thiamine deficiency and associated clinicaldisorders, first ed. Humana Press, a part of Springer Science + Business Media, LLC.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.