dark matter; gravitational lensing; quasars: general; cosmology: miscellaneous
Abstract :
[en] Although controversial, the scenario of microlensing as the dominant mechanism for the long-term optical variability of quasars does provide a natural explanation for both the statistical symmetry, achromaticity and lack of cosmological time dilation in quasar light curves. Here, we investigate to what extent dark matter populations of compact objects allowed in the currently favored Omega[SUB]M[/SUB]=0.3, Omega[SUB]Lambda[/SUB] =0.7 cosmology really can explain the quantitative statistical features of the observed variability. We find that microlensing reasonably well reproduces the average structure function of quasars, but fails to explain both the high fraction of objects with amplitudes higher than 0.35 mag and the mean amplitudes observed at redshifts below one. Even though microlensing may still contribute to the long-term optical variability at some level, another significant mechanism must also be involved. This severely complicates the task of using light-curve statistics from quasars which are not multiply imaged to isolate properties of any cosmologically significant population of compact objects which may in fact be present.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Zackrisson, E.; Department of Astronomy and Space Physics, Box 515, 75120 Uppsala, Sweden
Bergvall, N.; Department of Astronomy and Space Physics, Box 515, 75120 Uppsala, Sweden
Marquart, T.; Department of Astronomy and Space Physics, Box 515, 75120 Uppsala, Sweden
Alcock, C., Allsman, R. A., Alves, D., et al. 1998, ApJ, 499, L9
Alexander, T. 1995, MNRAS, 274, 909
Aretxaga, I. 1997, AGN Variability: from Seyfert Nuclei to QSOs, Rev. Mex. Astron. Astrofis. Ser. Conf., 6, 207
Baganoff, F. K., & Malkan, M. A. 1995, ApJ, 444, 13
Boyle, B. J., Shanks, T., Croom, S. M., et al. 2000, MNRAS, 317, 1014
Gibson, C. H., & Schild R. E. 1999, preprint [astro-ph/9904362]
Hawkins, M. R. S. 1993, Nature, 336, 242
Hawkins, M. R. S. 1996, MNRAS, 278, 787
Hawkins, M. R. S. 2000, A&AS, 143, 465
Hawkins, M. R. S. 2001, ApJ, 553, 97
Hawkins, M. R. S. 2002, MNRAS, 329, 76
Hawkins, M. R. S., & Taylor, A. N. 1997, ApJ, 482, 5
Hawkins, M. R. S., & Véron, P. 1995, MNRAS, 275, 1102
Hughes, P. A., Aller, H. D., & Aller, M. F. 1992, ApJ, 396, 469
Kawaguchi, T., Mineshige, S., Umemura, M., & Turner, E. L. 1998, ApJ, 504, 671
Kayser, R., Helbig, P., & Schramm, T. 1997, A&A, 318, 680
Lacey, C. G. 1994, Nature, 371, 210
Lasserre, T., Afonso, C., Albert, J. N., et al. 2000, A&A, 355, L39
Lewis, G. F., Miralda-Escudé, J., Richardson, D. C., & Wambsganss, J. 1993, MNRAS, 261, 647
Lineweaver, C. H., Tenorio, L., Smoot, G. F., et al. 1996, ApJ, 470, 38L
Mörtsell, E. 2002, A&A, 382, 787
Press, W. H., & Gunn, J. E. 1973, ApJ, 185, 397
Pei, Y. C. 1993, ApJ, 403, 7
Schneider, P. 1993, A&A, 279, 1
Surpi, G., Refsdal, S., & Helbig, P. 2003, A&A, submitted
Véron, P. 1983, Quasar Surveys and Cosmic Evolution, in Quasars and Gravitational Lenses, Proc. of the 24th Liège International Astrophysical Colloq., 210