scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Amit Y., and Geman D. Shape Quantization and Recognition with Randomized Trees Neural Comput. 9 1997 1545 1588 doi:10.1162/neco.1997.9.7.1545
Ashok K., and Ben-Akiva M.E. Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows Transp. Sci. 36 2002 184 198 doi:10.1287/trsc.36.2.184.563
Bell M.G.H. The Estimation of an Origin-Destination Matrix from Traffic Counts Transp. Sci. 17 1983 198 217 doi:10.1287/trsc.17.2.198
Bera, S., Rao, K.V.K. 2011. Estimation of origin-destination matrix from traffic counts: the state of the art. Eur. Transp. Trasp. Eur. 2-23.
Breiman L. Random Forests Mach. Learn. 45 2001 5 32 doi:10.1023/A:1010933404324
Cascetta E. Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator Transp. Res. Part B Methodol. 18 1984 289 299 doi:10.1016/0191-2615(84)90012-2
Cools M., Moons E., and Wets G. Assessing the Quality of Origin-Destination Matrices Derived from Activity Travel Surveys Transp. Res. Rec. J. Transp. Res. Board 2183 2010 49 59 doi:10.3141/2183-06
Djukic, T., van Lint, H., Hoogendoorn, S.P. 2014. Methodology for efficient real time OD demand estimation on large scale networks. Presented at the Transportation Research Board 93rd Annual Meeting.
Flötteröd G., Bierlaire M., and Nagel K. Bayesian Demand Calibration for Dynamic Traffic Simulations Transp. Sci. 45 2011 541 561 doi:10.1287/trsc.1100.0367
Frederix R., Viti F., Himpe W.W.E., and Tampère C.M.J. Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme J. Intell. Transp. Syst. 18 2014 51 66 doi:10.1080/15472450.2013.773249
Frederix R., Viti F., and Tampère C.M.J. Dynamic origin-destination estimation in congested networks: theoretical findings and implications in practice Transp. Transp. Sci. 9 2013 494 513 doi:10.1080/18128602.2011.619587
Hastie T., Tibshirani R., and Friedman J. Random Forests The Elements of Statistical Learning, Springer Series in Statistics 2009 Springer New York 587 604
Ho, T.K. 1995. Random decision forests, in:, Proceedings of the Third International Conference on Document Analysis and Recognition, 1995. Presented at the, Proceedings of the Third International Conference on Document Analysis and Recognition, 1995, pp. 278-282 vol.1. doi:10.1109/ICDAR.1995.598994
Lorenzo M., and Matteo M. OD Matrices Network Estimation from Link Counts by Neural Networks J. Transp. Syst. Eng. Inf. Technol. 13 2013 84 92 doi:10.1016/S1570-6672(13)60117-8
Maher M.J. Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach Transp. Res. Part B Methodol. 17 1983 435 447 doi:10.1016/0191-2615(83)90030-9
Marzano V., Papola A., and Simonelli F. Limits and perspectives of effective O-D matrix correction using traffic counts Transp. Res. Part C Emerg. Technol., Selected papers from the Sixth Triennial Symposium on Transportation Analysis (TRISTAN VI) 17 2009 120 132 doi:10.1016/j.trc.2008.09.001
Perrakis K., Karlis D., Cools M., and Janssens D. Bayesian inference for transportation origin-destination matrices: the Poisson-inverse Gaussian and other Poisson mixtures J. R. Stat. Soc. Ser. A Stat. Soc. 178 2015 271 296 doi:10.1111/rssa.12057
Perrakis K., Karlis D., Cools M., Janssens D., Vanhoof K., and Wets G. A Bayesian approach for modeling origin-destination matrices Transp. Res. Part Policy Pract. 46 2012 200 212 doi:10.1016/j.tra.2011.06.005
Sammut C., and Webb G.I. Encyclopedia of Machine Learning 1st ed. 2011 Springer Publishing Company Incorporated
Stopher P.R., and Greaves S.P. Household travel surveys: Where are we going? Transp. Res. Part Policy Pract. 41 2007 367 381 doi:10.1016/j.tra.2006.09.005
Talebian A., and Shafahi Y. The treatment of uncertainty in the dynamic origin-destination estimation problem using a fuzzy approach Transp. Plan. Technol. 38 2015 795 815 doi:10.1080/03081060.2015.1059124
Toledo T., and Kolechkina T. Estimation of Dynamic Origin #x 2013;Destination Matrices Using Linear Assignment Matrix Approximations IEEE Trans. Intell. Transp. Syst. 14 2013 618 626 doi:10.1109/TITS.2012.2226211
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.