Natural fibers; Hydrophobicity; Fluorescence probes; Low melting temperature mixture; Impregnation
Abstract :
[en] Bast flax fibers were treated, with or without ultrasound assistance, using a low melting mixture (LMM) composed of lactic acid, d-glucose and water. This LMM treatment affected both lignin and hemicelluloses contents and modified the fibers properties identified as crucial parameters in an industrial context, i.e. coloration, wettability, crystallinity, fibers diameter and chemical composition. Surface chemistry of the fibers were investigated through fluorescent tagged carbohydrates binding modules revealing macromolecular rearrangements responsible of both a fibers crystallinity enhancement and an unexpected hydrophobicity. It has been found that LMM treatments bleach fibers, which is considered a beneficial effect independent of the treatments.
Disciplines :
Chemistry
Author, co-author :
Morin, Sophie ; Université de Liège - ULiège > Département GxABT > SMARTECH
Lecart, Brieuc ; Université de Liège - ULiège > Département GxABT > SMARTECH
Istasse, Thibaut ; Université de Liège - ULiège > Département GxABT > SMARTECH
Bailly Maître Grand, Claire
Meddeb-Mouelhi, Fatma; Université du Québec à Trois-Rivières > Département chimie, biochimie et physique > Laboratoire de recherche sur le métabolisme spécialisé végétal
Beauregard, Marc; Université du Québec à Trois-Rivières > Département chimie, biochimie et physique
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > SMARTECH
Language :
English
Title :
Effect of a low melting temperature mixture on the surface properties of lignocellulosic flax bast fibers
Publication date :
01 April 2020
Journal title :
International Journal of Biological Macromolecules
Bousfield, G., Morin, S., Jacquet, N., Richel, A., Extraction and refinement of agricultural plant fibers for composites manufacturing. C. R. Chim. 21 (2018), 897–906, 10.1016/j.crci.2018.07.001.
Ramamoorthy, S.K., Skrifvars, M., Persson, A., A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym. Rev. 55 (2015), 107–162, 10.1080/15583724.2014.971124.
Biagiotti, J., Puglia, D., Torre, L., Kenny, J.M., Arbelaiz, A., Cantero, G., Marieta, C., Llano-Ponte, R., Mondragon, I., A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym. Compos. 25 (2004), 470–479, 10.1002/pc.20040.
Li, X., Tabil, L.G., Panigrahi, S., Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15 (2007), 25–33, 10.1007/s10924-006-0042-3.
Bhatia, J.K., Kaith, B.S., Kalia, S., Recent developments in surface modification of natural fibers for their use in biocomposites. Kalia, S., (eds.) Biodegradable Green Composites, 2016, John Wiley & Sons, Inc, Hoboken, NJ, 80–117, 10.1002/9781118911068.ch4.
Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., Liu, Y., Li, J., Yu, H., Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10 (2017), 1692–1700, 10.1002/cssc.201601795.
Li, T., Lyu, G., Liu, Y., Lou, R., Lucia, L., Yang, G., Chen, J., Saeed, H., Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). IJMS, 18, 2017, 2266, 10.3390/ijms18112266.
Manara, P., Zabaniotou, A., Vanderghem, C., Richel, A., Lignin extraction from Mediterranean agro-wastes: impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catal. Today 223 (2014), 25–34, 10.1016/j.cattod.2013.10.065.
Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., Choi, Y.H., Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766 (2013), 61–68, 10.1016/j.aca.2012.12.019.
Hébert-Ouellet, Y., Meddeb-Mouelhi, F., Khatri, V., Cui, L., Janse, B., MacDonald, K., Beauregard, M., Tracking and predicting wood fibers processing with fluorescent carbohydrate binding modules. Green Chem. 19 (2017), 2603–2611, 10.1039/C6GC03581G.
Bombeck, P.-L., Khatri, V., Meddeb-Mouelhi, F., Montplaisir, D., Richel, A., Beauregard, M., Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules. Biotechnol. Biofuels, 10, 2017, 293, 10.1186/s13068-017-0980-0.
Khatri, V., Meddeb-Mouelhi, F., Adjallé, K., Barnabé, S., Beauregard, M., Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules. Biotechnol. Biofuels, 11, 2018, 10.1186/s13068-018-1145-5.
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976), 248–254, 10.1016/0003-2697(76)90527-3.
Nair, G.R., Lyew, D., Yaylayan, V., Raghavan, V., Application of microwave energy in degumming of hemp stems for the processing of fibres. Biosyst. Eng. 131 (2015), 23–31, 10.1016/j.biosystemseng.2014.12.012.
Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K., On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12 (2005), 563–576, 10.1007/s10570-005-9001-8.
Cao, Y., Chan, F., Chui, Y.-H., Xiao, H., Characterization of flax fibres modified by alkaline, enzyme, and steam-heat treatments. BioResources 7 (2012), 4109–4121.
Cunha, A.G., Gandini, A., Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17 (2010), 875–889, 10.1007/s10570-010-9434-6.
Wang, Q., Xiao, S., Shi, S.Q., Cai, L., Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Sci. Rep. 8 (2018), 1–10, 10.1038/s41598-018-19623-4.