M. Ragwitz, A. Herbst, S. Hirzel, M. Ragwitz, M. Rehfeldt, M. Reuter, and J. Steinbach, “Service contract regarding a study on 'Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables)' ENER/C2/2014-641,” 2016.
European Commission, “An EU Strategy on Heating and Cooling. COM(2016) 51 final,” vol. 1. 2016.
EPRI, “U.S. National Electrification Assessment,” no. April, 2018.
A. Bloess, W.-P. Schill, and A. Zerrahn, “Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,” Appl. Energy, vol. 212, pp. 1611-1626, Feb. 2018.
F. IWES/IBP, “Heat Transition 2030,” Agora Energiewende, 2017.
K. Schaber, F. Steinke, and T. Hamacher, “Managing Temporary Oversupply from Renewables Efficiently: Electricity Storage Versus Energy Sector Coupling in Germany,” Int. Energy Work. 2013, pp. 1-22, 2013.
S. V. Raghavan, M. Wei, and D. M. Kammen, “Scenarios to decarbonize residential water heating in California,” Energy Policy, vol. 109, no. May, pp. 441-451, 2017.
M. J. Hannon, “Raising the temperature of the UK heat pump market: Learning lessons from Finland,” Energy Policy, vol. 85, pp. 369-375, 2015.
S. Karytsas, “An empirical analysis on awareness and intention adoption of residential ground source heat pump systems in Greece,” Energy Policy, vol. 123, no. March, pp. 167-179, 2018.
T. Brown, D. Schlachtberger, A. Kies, S. Schramm, and M. Greiner, “Synergies of sector coupling and transmission extension in a cost-optimised, highly renewable European energy system,” 2018.
M. Chaudry, M. Abeysekera, S. H. R. Hosseini, N. Jenkins, and J. Wu, “Uncertainties in decarbonising heat in the UK,” Energy Policy, vol. 87, pp. 623-640, 2015.
dena, “Integrierte Energiewende,” 2018.
J. Ecke, S. Klein, S. Werner Klein, and T. Steinert, “Klimaschutz durch Sektorenkopplung: Optionen, Szenarien, Kosten,” vol. 49, no. 0, pp. 0-56, 2017.
F. I. und C. ifeu, “Wert der Effizienz im Gebäudesektor in Zeiten der Sektorenkopplung Wert der Effizienz im Gebäudesektor in Zeiten der Sektorenkopplung,” 2018.
N. Shao, S. You, H. Segerberg, and D. K. K. Lyngby, “Integration of 100 % heat pumps and electric vehicles in the low voltage distribution network: a Danish case study,” 3 Microgen, 2013.
P. de Boer-Meulman, J. J. A. van der Burgt, P. J. M. Hafkamp, R. Hunik, E. Kokmeijer, C. Kolokathis, F. Nieuwenhout, Ö. Özdemir, R. Ross, K. Schoots, and F. D. Sikkema, “Effect of scenarios and alternatives for electric vehicles and heat pump implementation on grid reliability, sustainability and socio-economy,” Management, no. 10, p. 94, 2010.
B. Felten, J. Raasch, and C. Weber, “Photovoltaics and heat pumps - Limitations of local pricing mechanisms,” Energy Econ., vol. 71, pp. 383-402, 2018.
A. F. Sandvall, E. O. Ahlgren, and T. Ekvall, “Low-energy buildings heat supply-Modelling of energy systems and carbon emissions impacts,” Energy Policy, vol. 111, no. January, pp. 371-382, 2017.
D. Connolly, “Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries,” Energy, vol. 139, pp. 580-593, 2017.
A. Bloess, W. P. Schill, and A. Zerrahn, “Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,” Appl. Energy, vol. 212, no. August 2017, pp. 1611-1626, 2018.
B. Baeten, F. Rogiers, and L. Helsen, “Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response,” Appl. Energy, vol. 195, pp. 184-195, 2017.
S. Heinen, W. Turner, L. Cradden, F. McDermott, and M. O'Malley, “Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis,” Energy, vol. 127, pp. 136-154, 2017.
O. Ruhnau, “Modellierung von Power-to-Heat zur Bestimmung der Auswirkungen auf die Strommarktintegration fluktuierender Erneuerbarer Energien,” 2017.
S. D. Watson, K. J. Lomas, and R. A. Buswell, “Decarbonising domestic heating_ What is the peak GB demand?.pdf,” Energy Policy, vol. 126, no. August 2018, pp. 533-544, 2019.
European Commission, “A Clean Planet for all: A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy,” Brussels, 2018.
L. Mantzos, T. Wiesenthal, N. A. Matei, S. Tchung-Ming, and M. Rozsai, “JRC-IDEES: Integrated Database of the European Energy Sector,” 2017.
Open Power System Data, “Data Package Time series,” Version 2018-06-30, 2018. [Online]. Available: https://doi.org/10.25832/time_series/2018-06-30.
Copernicus Climate Change Service (C3S), “ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate,” 2017.
M. De Felice, “Country averages of Copernicus ERA5 hourly meteorological variables [Data set],” Zenodo, 2018. [Online]. Available: http://doi.org/10.5281/zenodo.1489915%0A.
J. A. Azevedo, L. Chapman, and C. L. Muller, “Critique and suggested modifications of the degree days methodology to enable long-term electricity consumption assessments: a case study in Birmingham, UK,” Meteorol. Appl., vol. 22, no. 4, pp. 789-796, Oct. 2015.
Hidalgo González, I., Quoilin, S., & Zucker, A. Dispa-SET 2.0: unit commitment and power dispatch model (EUR 27015 EN). Petten, Netherlands: European Commission. 2014
Quoilin, S., Hidalgo Gonzalez, I., & Zucker, A. Modelling Future EU Power Systems Under High Shares of Renewables: The Dispa-SET 2.1 open-source model. Publications Office of the European Union. 2017
Kavvadias, K., Hidalgo Gonzalez, I., Zucker, A., & Quoilin, S. Integrated modelling of future EU power and heat systems - The Dispa-SET v2.2 open-source model (EUR 29085 EN). Luxembourg: European Commission. 2018