Jamet, Alexandre; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
Dervyn, Rozenn; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
Lapaque, Nicolas; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
Bugli, Francesca; Institute of Microbiology, University Cattolica Del Sacro Cuore, Rome, Italy
Perez-Cortez, Naima G.; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, INRA, Unité d'Immuno-Allergie Alimentaire France, iBiTecS/SPI, Gif-sur-Yvette, France
Blottière, Hervé M.; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
Twizere, Jean-Claude ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
Sanguinetti, Maurizio; Institute of Microbiology, University Cattolica Del Sacro Cuore, Rome, Italy
Posteraro, Brunella; Institute of Public Health, Section of Hygiene, Universita Cattolica Del Sacro Cuore, Rome, Italy
Serror, Pascale; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
Maguin, Emmanuelle; Micalis Institute, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
Language :
English
Title :
The Enterococcus faecalis virulence factor ElrA interacts with the human Four-And-A-Half LIM Domains Protein
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65, doi: 10.1038/nature08821 (2010).
Bar, K., Wisplinghoff, H., Wenzel, R. P., Bearman, G. M. & Edmond, M. B. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infections due to enterococci. BMC infectious diseases 6, 145, doi: 10.1186/1471-2334-6-145 (2006).
Agudelo Higuita, N. I. & Huycke, M. M. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds M. S. Gilmore, D. B. Clewell, Y. Ike & N. Shankar) (Massachusetts Eye and Ear Infirmary, 2014).
Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nature reviews. Microbiology 10, 266-278, doi: 10.1038/nrmicro2761 (2012).
Hollenbeck, B. L. & Rice, L. B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3, 421-433, doi: 10.4161/viru.21282 (2012).
Riboulet, E. et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. Journal of molecular microbiology and biotechnology 13, 140-146, doi: 10.1159/000103605 (2007).
Fisher, K. & Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology (Reading, England) 155, 1749-1757, doi: 10.1099/mic.0.026385-0 (2009).
Rince, A. et al. Physiological and molecular aspects of bile salt response in Enterococcus faecalis. International journal of food microbiology 88, 207-213 (2003).
Torelli, R. et al. The PavA-like fibronectin-binding protein of Enterococcus faecalis, EfbA, is important for virulence in a mouse model of ascending urinary tract infection. The Journal of infectious diseases 206, 952-960, doi: 10.1093/infdis/jis440 (2012).
Brinster, S. et al. Enterococcal leucine-rich repeat-containing protein involved in virulence and host inflammatory response. Infection and immunity 75, 4463-4471, doi: 10.1128/iai.00279-07 (2007).
Schlievert, P. M. et al. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infection and immunity 66, 218-223 (1998).
Rich, R. L. et al. Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. The Journal of biological chemistry 274, 26939-26945 (1999).
Schluter, S. et al. The high biofilm-encoding Bee locus: A second pilus gene cluster in Enterococcus faecalis? Current microbiology 59, 206-211, doi: 10.1007/s00284-009-9422-y (2009).
Nallapareddy, S. R. et al. Conservation of Ebp-Type pilus genes among Enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infection and immunity 79, 2911-2920, doi: 10.1128/iai.00039-11 (2011).
Sillanpaa, J. et al. A family of fibrinogen-binding MSCRAMMs from Enterococcus faecalis. Microbiology (Reading, England) 155, 2390-2400, doi: 10.1099/mic.0.027821-0 (2009).
Bhatty, M. et al. Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence. Molecular microbiology 95, 660-677, doi: 10.1111/mmi.12893 (2015).
Sussmuth, S. D. et al. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infection and immunity 68, 4900-4906 (2000).
Rozdzinski, E., Marre, R., Susa, M., Wirth, R. & Muscholl-Silberhorn, A. Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microbial pathogenesis 30, 211-220, doi: 10.1006/mpat.2000.0429 (2001).
Nallapareddy, S. R., Qin, X., Weinstock, G. M., Hook, M. & Murray, B. E. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infection and immunity 68, 5218-5224 (2000).
Nielsen, H. V. et al. Pilin and sortase residues critical for endocarditis-and biofilm-Associated pilus biogenesis in Enterococcus faecalis. Journal of bacteriology 195, 4484-4495, doi: 10.1128/jb.00451-13 (2013).
de Barsy, M. et al. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cellular microbiology 13, 1044-1058, doi: 10.1111/j.1462-5822.2011.01601.x (2011).
Mukhtar, M. S. et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science (New York, N.Y.) 333, 596-601, doi: 10.1126/science.1203659 (2011).
Calderwood, M. A. et al. Epstein-Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences of the United States of America 104, 7606-7611, doi: 10.1073/pnas.0702332104 (2007).
de Chassey, B. et al. Hepatitis C virus infection protein network. Molecular systems biology 4, 230, doi: 10.1038/msb.2008.66 (2008).
Simonis, N. et al. Host-pathogen interactome mapping for HTLV-1 and-2 retroviruses. Retrovirology 9, 26, doi: 10.1186/1742-4690-9-26 (2012).
Mairiang, D. et al. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PloS one 8, e53535, doi: 10.1371/journal.pone.0053535 (2013).
Bierne, H. & Cossart, P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiology and molecular biology reviews: MMBR 71, 377-397, doi: 10.1128/mmbr.00039-06 (2007).
Pizarro-Cerda, J., Kuhbacher, A. & Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view. Cold Spring Harbor perspectives in medicine 2, doi: 10.1101/cshperspect.a010009 (2012).
Yamaguchi, M., Terao, Y. & Kawabata, S. Pleiotropic virulence factor-Streptococcus pyogenes fibronectin-binding proteins. Cellular microbiology 15, 503-511, doi: 10.1111/cmi.12083 (2013).
Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chemical reviews 108, 1225-1244, doi: 10.1021/cr040409x (2008).
Stynen, B., Tournu, H., Tavernier, J. & Van Dijck, P. Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiology and molecular biology reviews: MMBR 76, 331-382, doi: 10.1128/mmbr.05021-11 (2012).
Voth, D. E. ThANKs for the repeat: Intracellular pathogens exploit a common eukaryotic domain. Cellular logistics 1, 128-132, doi: 10.4161/cl.1.4.18738 (2011).
Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173-1178, doi: 10.1038/nature04209 (2005).
Dobrijevic, D. et al. High-Throughput system for the presentation of secreted and surface-exposed proteins from Gram-positive bacteria in functional metagenomics studies. PloS one 8, e65956, doi: 10.1371/journal.pone.0065956 (2013).
Rual, J. F. et al. Human ORFeome version 1.1: A platform for reverse proteomics. Genome research 14, 2128-2135, doi: 10.1101/gr.2973604 (2004).
Lamesch, P. et al. hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307-315, doi: 10.1016/j.ygeno.2006.11.012 (2007).
Shathasivam, T., Kislinger, T. & Gramolini, A. O. Genes, proteins and complexes: The multifaceted nature of FHL family proteins in diverse tissues. Journal of cellular and molecular medicine 14, 2702-2720, doi: 10.1111/j.1582-4934.2010.01176.x (2010).
Morgan, M. J. & Madgwick, A. J. The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle. Biochemical and biophysical research communications 255, 245-250, doi: 10.1006/bbrc.1999.0179 (1999).
Hicks, S. W. & Galan, J. E. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nature reviews. Microbiology 11, 316-326, doi: 10.1038/nrmicro3009 (2013).
Walsh, C. Posttranslational Modification of Proteins: Expanding Nature's Inventory: Roberts and Compagny Publishers. (2006).
Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature biotechnology 17, 1030-1032, doi: 10.1038/13732 (1999).
Dotreppe, D., Mullier, C., Letesson, J. J. & De Bolle, X. The alkylation response protein AidB is localized at the new poles and constriction sites in Brucella abortus. BMC microbiology 11, 257, doi: 10.1186/1471-2180-11-257 (2011).
Cortes-Perez, N. G. et al. Overexpression of Enterococcus faecalis elr operon protects from phagocytosis. BMC microbiology 15, 112, doi: 10.1186/s12866-015-0448-y (2015).
Kadrmas, J. L. & Beckerle, M. C. The LIM domain: from the cytoskeleton to the nucleus. Nature reviews. Molecular cell biology 5, 920-931, doi: 10.1038/nrm1499 (2004).
McCabe, A., Hashimoto, K., Hall, W. W. & Sheehy, N. The four and a half LIM family members are novel interactants of the human T-cell leukemia virus type 1 Tax oncoprotein. Journal of virology 87, 7435-7444, doi: 10.1128/jvi.00070-13 (2013).
Kleiber, K., Strebhardt, K. & Martin, B. T. The biological relevance of FHL2 in tumour cells and its role as a putative cancer target. Anticancer research 27, 55-61 (2007).
Dahan, J. et al. LIM-only protein FHL2 activates NF-kappaB signaling in the control of liver regeneration and hepatocarcinogenesis. Molecular and cellular biology 33, 3299-3308, doi: 10.1128/mcb.00105-13 (2013).
Johannessen, M., Moller, S., Hansen, T., Moens, U. & Van Ghelue, M. The multifunctional roles of the four-And-A-half-LIM only protein FHL2. Cellular and molecular life sciences: CMLS 63, 268-284, doi: 10.1007/s00018-005-5438-z (2006).
Horsley, H. et al. Enterococcus faecalis subverts and invades the host urothelium in patients with chronic urinary tract infection. PloS one 8, e83637, doi: 10.1371/journal.pone.0083637 (2013).
Baldassarri, L. et al. Glycosaminoglycans mediate invasion and survival of Enterococcus faecalis into macrophages. The Journal of infectious diseases 191, 1253-1262, doi: 10.1086/428778 (2005).
Gentry-Weeks, C. R., Karkhoff-Schweizer, R., Pikis, A., Estay, M. & Keith, J. M. Survival of Enterococcus faecalis in mouse peritoneal macrophages. Infection and immunity 67, 2160-2165 (1999).
Zou, J. & Shankar, N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cellular microbiology 18, 831-843, doi: 10.1111/cmi.12556 (2016).
Zou, J. & Shankar, N. Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages. Infection and immunity 82, 5132-5142, doi: 10.1128/iai.02426-14 (2014).
LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. Nature reviews. Microbiology 13, 191-205, doi: 10.1038/nrmicro3420 (2015).
Dortet, L., Mostowy, S. & Cossart, P. Listeria and autophagy escape: involvement of InlK, an internalin-like protein. Autophagy 8, 132-134, doi: 10.4161/auto.8.1.18218 (2012).
Dortet, L. et al. Recruitment of the major vault protein by InlK: A Listeria monocytogenes strategy to avoid autophagy. PLoS pathogens 7, e1002168, doi: 10.1371/journal.ppat.1002168 (2011).
Tatusova, T., Ciufo, S., Fedorov, B., O'Neill, K. & Tolstoy, I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic acids research 42, D553-559, doi: 10.1093/nar/gkt1274 (2014).
Liu, J. Y., Li, A. H., Ji, C. & Yang, W. M. First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Veterinary microbiology 136, 314-320, doi: 10.1016/j.vetmic.2008.11.027 (2009).
Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science (New York, N.Y.) 347, 1260419, doi: 10.1126/science.1260419 (2015).
Vidalain, P. O., Boxem, M., Ge, H., Li, S. & Vidal, M. Increasing specificity in high-Throughput yeast two-hybrid experiments. Methods (San Diego, Calif.) 32, 363-370, doi: 10.1016/j.ymeth.2003.10.001 (2004).
Braun, P. et al. An experimentally derived confidence score for binary protein-protein interactions. Nature methods 6, 91-97, doi: 10.1038/nmeth.1281 (2009).
Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science (New York, N.Y.) 322, 104-110, doi: 10.1126/science.1158684 (2008).
Walhout, A. J. & Vidal, M. High-Throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods (San Diego, Calif.) 24, 297-306, doi: 10.1006/meth.2001.1190 (2001).
Henry, T. et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proceedings of the National Academy of Sciences of the United States of America 103, 13497-13502, doi: 10.1073/pnas.0605443103 (2006).
Sambrook, J. & Russell, D. W. Molecular cloning: A laboratory manual. 3rd ed. ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory (2001).
Maguin, E., Duwat, P., Hege, T., Ehrlich, D. & Gruss, A. New thermosensitive plasmid for gram-positive bacteria. Journal of bacteriology 174, 5633-5638 (1992).
Lebreton, F. et al. ace, Which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infection and immunity 77, 2832-2839, doi: 10.1128/iai.01218-08 (2009).
Michaux, C. et al. SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infection and immunity 79, 2638-2645, doi: 10.1128/iai.01132-10 (2011).
Nallapareddy, S. R. et al. Endocarditis and biofilm-Associated pili of Enterococcus faecalis. The Journal of clinical investigation 116, 2799-2807, doi: 10.1172/jci29021 (2006).
Singh, K. V., La Rosa, S. L., Somarajan, S. R., Roh, J. H. & Murray, B. E. The fibronectin-binding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis. Infection and immunity 83, 4487-4494, doi: 10.1128/iai.00884-15 (2015).
Nallapareddy, S. R., Singh, K. V., Duh, R. W., Weinstock, G. M. & Murray, B. E. Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of Ace during human infections. Infection and immunity 68, 5210-5217 (2000).
Creti, R. et al. Surface protein EF3314 contributes to virulence properties of Enterococcus faecalis. The International journal of artificial organs 32, 611-620 (2009).
Sahm, D. F. et al. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrobial agents and chemotherapy 33, 1588-1591 (1989).
Dunny, G. M., Brown, B. L. & Clewell, D. B. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proceedings of the National Academy of Sciences of the United States of America 75, 3479-3483 (1978).