Unpublished conference/Abstract (Scientific congresses and symposiums)
Nyldon words
Stipulanti, Manon
2020Joint Mathematics Meetings (JMM2020)
 

Files


Full Text
Beamer_JMM0120.pdf
Author preprint (405.76 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Lyndon words; Nyldon words; complete factorization of the free monoid; Lazard factorization; Hall set; comma-free code
Abstract :
[en] The Chen-Fox-Lyndon theorem states that every finite word over a fixed alphabet can be uniquely factorized as a lexicographically nonincreasing sequence of Lyndon words. This theorem can be used to define the family of Lyndon words in a recursive way. In a Mathoverflow post dating from November 2014, Darij Grinberg defines a variant of Lyndon words, which he calls Nyldon words, by reversing the lexicographic order. In a recent collaboration with Emilie Charlier (University of Liège) and Manon Philibert (Aix-Marseille University), we show that every finite word can be uniquely factorized into a lexicographically nondecreasing sequence of Nyldon words. Otherwise stated, Nyldon words form a complete factorization of the free monoid with respect to the decreasing lexicographic order. In our paper, we investigate this new family of words by presenting some of their properties.
Disciplines :
Mathematics
Author, co-author :
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Nyldon words
Publication date :
15 January 2020
Number of pages :
22
Event name :
Joint Mathematics Meetings (JMM2020)
Event organizer :
The American Mathematical Society (AMS) and the Mathematical Association of America (MAA)
Event place :
Denver, Colorado, United States
Event date :
du 15 au 18 janvier 2020
By request :
Yes
Audience :
International
Funders :
BAEF - Belgian American Educational Foundation
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
Work in collaboration with Émilie Charlier (ULiège) and Manon Philibert (Université Aix-Marseille). // Travail en collaboration avec Émilie Charlier (ULiège) et Manon Philibert (Université Aix-Marseille).
Available on ORBi :
since 16 January 2020

Statistics


Number of views
96 (2 by ULiège)
Number of downloads
65 (1 by ULiège)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi