DARCIS, Gilles ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service des maladies infectieuses - médecine interne
Ait-Ammar, Amina
Van Lint, Carine
Language :
English
Title :
Applications of CRISPR/Cas9 tools in deciphering the mechanisms of HIV-1 persistence.
Arts, E.J., Hazuda, D.J., HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med, 2, 2012, a007161.
Hogg, R.S., Heath, K.V., Yip, B., Craib, K.J.P., O'Shaughnessy, M.V., Schechter, M.T., Montaner, J.S.G., Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. J Am Med Assoc 279 (1998), 450–454.
Davey, R.T., Bhat, N., Yoder, C., Chun, T.-W., Metcalf, J.A., Dewar, R., Natarajan, V., Lempicki, R.A., Adelsberger, J.W., Miller, K.D., et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A 96 (1999), 15109–15114.
Deeks, S., Autran, B., Berkhout, B., Benkirane, M., Cairns, S., Chomont, N., Chun, T.-W., Churchill, M., Di Mascio, M., Katlama, C., et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12 (2012), 607–614.
Darcis, G., Van Driessche, B., Bouchat, S., Kirchhoff, F., Van Lint, C., Molecular control of HIV and SIV latency. Silvestri, G., Lichterfeld, M., (eds.) HIV-1 Latency. Current Topics in Microbiology and Immunology, 2017, Springer, Cham, vol 417 This review covers epigenetic and transcriptional mechanisms of HIV-1 latency, especially highlighting its complexity and heterogeneity.
Van Lint, C., Bouchat, S., Marcello, A., HIV-1 transcription and latency: an update. Retrovirology 10 (2013), 1–38.
Chun, T.-W.W., Moir, S., Fauci, A.S., HIV reservoirs as obstacles and opportunities for an HIV cure. Nat Immunol 16 (2015), 584–589.
Kulpa, D.A., Chomont, N., HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide?. J Virus Erad 1 (2015), 59–66.
Zerbato, J.M., McMahon, D.K., Sobolewski, M.D., Mellors, J.W., Sluis-Cremer, N., Naïve CD4+ T cells harbor a large inducible reservoir of latent, replication-competent HIV-1. Clin Infect Dis, 2019, ciz108.
Hiener, B., Horsburgh, B.A., Eden, J.S., Barton, K., Schlub, T.E., Lee, E., von Stockenstrom, S., Odevall, L., Milush, J.M., Liegler, T., et al. Identification of genetically intact HIV-1 proviruses in specific CD4+ T cells from effectively treated participants. Cell Rep 21 (2017), 813–822.
Eisele, E., Siliciano, R.F., Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37 (2012), 377–388.
Sengupta, S., Siliciano, R.F., Targeting the latent reservoir for HIV-1. Immun Rev 48 (2018), 872–895 This recent review exposes mechanisms of HIV-1 persistence and focuses on the immune interventions that will be necessary to eliminate the infected cells and reach the objective of an HIV cure.
Sigal, A., Baltimore, D., As good as it gets? the problem of HIV persistence despite antiretroviral drugs. Cell Host Microbe 12 (2012), 132–138.
Wong, J.K., Yukl, S.A., Tissue reservoirs of HIV. Curr Opin HIV AIDS 11 (2016), 362–370 The vast majority of target cells for HIV-1 infection are located in tissue compartments rather than in the peripheral blood. Yet, to date, there are few studies that have analyzed the tissue reservoirs for HIV-1 persistence. In this review, the distribution of HIV-1 reservoirs is described and discussed, as well as its impact on regulatory mechanisms of HIV-1 gene expression.
Darcis, G., Bouchat, S., Kula, A., Vanhulle, C., Driessche, B., Van, De, Wit, S., Rohr, O., Rouzioux, C., Van Lint, C., Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir. AIDS 31 (2017), 181–189.
Trejbalova, K., Kovarova, D., Blazkova, J., Machala, L., Jilich, D., Weber, J., Kucerova, D., Vencálek, O., Hirsch, I., Hejnar, J., Development of 5'LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenet 8 (2016), 1–20.
Doudna, J.A., Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9. Science (80-), 346, 2014 1258096 In this review, the two scientists who were keys in the development and the success of CRISPR/Cas9 editing technology come back on the past, present and future aspects of this technique.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barrettto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. Multiplex genome engineering using CRISPR/Cas systems. Science (80-) 339 (2013), 819–823.
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., RNA-guided human genome engineering via Cas9. Science (80-) 339 (2013), 823–826.
Hsu, P.D., Lander, E.S., Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering. Cell 157 (2014), 1262–1278 This review extensively covers the multiple advances in CRISPR/Cas9 applications in interrogating the mechanisms of mammalian genome function, emphasizing on the driving force of this technology in fundamental and applied biology.
Barrangou, R., Doudna, J.A., Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34 (2016), 933–941.
Liu, X., Kraus, W.L., Bai, X., Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 40 (2015), 516–525.
Ott, M., Geyer, M., Zhou, Q., The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10 (2011), 426–435.
Van Lint, C., Emiliani, S., Ott, M., Verdin, E., Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15 (1996), 1112–1120.
Jadlowsky, J.K., Wong, J.Y., Graham, A.C., Dobrowolski, C., Devor, R.L., Adams, M.D., Fujinaga, K., Karn, J., Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat. Mol Cell Biol 34 (2014), 1911–1928.
Sobhian, B., Laguette, N., Yatim, A., Nakamura, M., Levy, Y., Kiernan, R., Benkirane, M., HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38 (2010), 439–451.
He, N., Liu, M., Hsu, J., Xue, Y., Chou, S., Burlingame, A., Krogan, N.J., Alber, T., Zhou, Q., HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 38 (2010), 428–438.
Wei, P., Garber, M.E., Fang, S.-M., Fischer, W.H., Jones, K.A., A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92 (1998), 451–462.
Lu, H., Li, Z., Zhang, W., Schulze-Gahmen, U., Xue, Y., Zhou, Q., Gene target specificity of the Super Elongation Complex (SEC) family: how HIV-1 Tat employs selected SEC members to activate viral transcription. Nucleic Acids Res 43 (2015), 5868–5879.
Li, Z., Lu, H., Zhou, Q., A minor subset of super elongation complexes plays a predominant role in reversing HIV-1 latency. Mol Cell Biol 36 (2016), 1194–1205.
Li, Z., Wu, J., Chavez, L., Hoh, R., Deeks, S.G., Pillai, S.K., Zhou, Q., Reiterative Enrichment and Authentication of CRISPRi Targets (REACT) identifies the proteasome as a key contributor to HIV-1 latency. PLoS Pathog, 15, 2019, e1007498 In their research article, Li et al. report the first large-scale functional screen for HIV-1 persistence. Using iterative enrichment, they identify that the proteasome is a key actor in HIV-1 transcriptional repression through the control of transcriptional elongation of the viral genes.
Gilbert, L., Larson, M., Morsut, L., Liu, Z., Brar, G., Torres, S., Stern-Ginossar, N., Brandman, O., Whitehead, E., Doudna, J., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
Miller, L.K., Kobayashi, Y., Chen, C.-C., Russnak, T.A., Ron, Y., Dougherty, J.P., Proteasome inhibitors act as bifunctional antagonists of human immunodeficiency virus type 1 latency and replication. Retrovirology, 10, 2013, 120.
Malim, M., Emerman, M., HIV-1 accessory proteins – ensuring viral survival in a hostile environment. Cell Host Microbe Rev 3 (2008), 388–398.
Lusic, M., Siliciano, R.F., Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol 15 (2017), 69–82 In their review, Lusic and Siliciano expose how the nuclear environment participates in the life cycle of HIV-1 and in the outcome of the viral infection. Functional implications of the nuclear landscape in therapeutic interventions are also discussed.
Einkauf, K.B., Lee, G.Q., Gao, C., Sharaf, R., Sun, X., Hua, S., Chen, S.M.Y., Jiang, C., Lian, X., Chowdhury, F.Z., et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J Clin Invest 129 (2019), 988–998.
Ikeda, T., Shibata, J., Yoshimura, K., Koito, A., Matsushita, S., Recurrent HIV‐1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J Infect Dis 195 (2007), 716–725.
Maldarelli, F., Wu, X., Su, L., Simonetti, F., Shao, W., Hill, S., Spindler, J., Ferris, A., Mellors, J., Kearney, M., et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science (80-) 345 (2014), 179–184.
Wagner, T.A., McLaughlin, S., Garg, K., Cheung, C.Y.K., Larsen, B.B., Styrchak, S., Huang, H.C., Edlefsen, P.T., Mullins, J.I., Frenkel, L.M., Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science (80-) 345 (2014), 570–573.
Hughes, S., Coffin, J., What integration sites tell us about HIV persistence. Cell Host Microbe Perspect 19 (2016), 588–598.
Cesana, D., Santoni de Sio, F.R., Rudilosso, L., Gallina, P., Calabria, A., Beretta, S., Merelli, I., Bruzzesi, E., Passerini, L., Nozza, S., et al. HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nat Commun 8 (2017), 1–11.
Simonetti, F.R., Sobolewski, M.D., Fyne, E., Shao, W., Spindler, J., Hattori, J., Anderson, E.M., Watters, S.A., Hill, S., Wu, X., et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 113 (2016), 1883–1888.
Jordan, A., Bisgrove, D., Verdin, E., HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22 (2003), 1868–1877.
Chen, H.-C., Martinez, J., Zorita, E., Meyerhans, A., Filion, G.J., Position effects influence HIV latency reversal. Nat Struct Mol Biol 24 (2017), 47–54.
Dahabieh, M.S., Ooms, M., Simon, V., Sadowski, I., A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J Virol 87 (2013), 4716–4727.
Sherrill-Mix, S., Lewinski, M.K., Famiglietti, M., Bosque, A., Malani, N., Ocwieja, K.E., Berry, C.C., Looney, D., Shan, L., Agosto, L.M., et al. HIV latency and integration site placement in five cell-based models. Retrovirology 10 (2013), 1–14.
Battivelli, E., Dahabieh, M., Abdel-Mohsen, M., Svensson, J.P., Tojal Da Silva, I., Cohn, L., Gramatica, A., Deeks, S., Greene, W., Pillai, S., et al. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. eLife 7 (2018), 1–22.
Spina, C.A., Anderson, J., Archin, N.M., Bosque, A., Chan, J., Famiglietti, M., Greene, W., Kashuba, A., Lewin, S., Margolis, D., et al. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9 (2013), 1–15.
Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E.J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540 (2016), 144–149.
Bialek, J.K., Walther, T., Hauber, J., Lange, U.C., CRISPR-Cas9-based genome engineering to generate Jurkat reporter models for HIV-1 infection with selected proviral integration sites. J Vis Exp, 14, 2018, 10.3791/58572 Bialek et al. provide in their paper a detailed framework for establishing reporter cell lines with selected integration sites for HIV-1. This paves the way for future mechanistic studies on if and how HIV-1 integration sites control viral gene expression and clonal expansion.
Marini, B., Kertesz-Farkas, A., Ali, H., Lucic, B., Lisek, K., Manganaro, L., Pongor, S., Luzzati, R., Recchia, A., Mavilio, F., et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521 (2015), 227–231.
Lusic, M., Marini, B., Ali, H., Lucic, B., Luzzati, R., Giacca, M., Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13 (2013), 665–677.
Wu, X., Mao, S., Ying, Y., Krueger, C.J., Chen, A.K., Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genom Proteom Bioinf 17 (2019), 119–128.
Ma, Y., Wang, M., Li, W., Zhang, Z.-P., Zhang, X., Wu, G., Tan, T., Cui, Z., Zhang, X.E., Live visualization of HIV-1 proviral DNA using a dual-color-labeled CRISPR system. Anal Chem 89 (2017), 12896–12901 This pioneer study shows the feasibility of using CRISPR-based system for single HIV-1 provirus imaging, a system that allows more dynamic imaging than immune-based methods.
Darcis, G., Das, A.T., Berkhout, B., Tackling HIV persistence: pharmacological versus CRISPR-based shock strategies. Viruses 10 (2018), 1–17 In their review, Darcis et al. compare pharmacological versus CRISPR-based approaches in anti-HIV therapeutic interventions.
Wang, G., Zhao, N., Berkhout, B., Das, A.T., CRISPR-Cas based antiviral strategies against HIV-1. Virus Res 244 (2018), 321–332.
Jasin, M., Haber, J.E., The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 44 (2016), 6–16.
Schumann, K., Lin, S., Boyer, E., Simeonov, D.R., Subramaniam, M.E., Gate, R.E., Haliburton, G.E., Ye, C.J., Bluestone, J.A., Doudna, J.A., et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 112 (2015), 10437–10442.
Stevenson, M., HIV persistence in macrophages. Nat Med 23 (2017), 538–539.
Kuscu, C., Arslan, S., Singh, R., Thorpe, J., Adli, M., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32 (2014), 677–683.