Albert A., Echevin V., Lévy M., Aumont O., (2010). Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J. Geophys. Res. 115:C12033. 10.1029/2010JC006569
Alegre A., Bertrand A., Espino M., Espinoza P., Dioses T., Ñiquen M., et al. (2015). Diet diversity of jack and chub mackerels and ecosystem changes in the northern Humboldt current system: a long-term study. Prog. Oceanogr. 137 299–313. 10.1016/j.pocean.2015.07.010
Allison E. H., Perry A. L., Badjeck M.-C., Neil Adger W., Brown K., Conway D., et al. (2009). Vulnerability of national economies to the impacts of climate changes on fisheries. Fish Fish. 10 173–196. 10.1111/j.1467-2979.2008.00310.x
Astudillo O., Dewitte B., Mallet M., Frappart F., Rutllant J. A., Ramos M., et al. (2017). Surface winds off Peru-Chile: observing closer to the coast from radar altimetry. Remote Sens. Environ. 191 179–196. 10.1016/j.rse.2017.01.010
Bakun A., Nelson C. S., (1991). The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr. 21 1815–1834.
Banse K., Naqvi S. W. A., Narvekar P. V., Postel J. R., Jayakumar D. A., (2014). Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales. Biogeosciences 11 2237–2261 10.5194/bg-11-2237-2014
Barton A., Hales B., Waldbusser G. G., Langdon C., Feely R. A., (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol. Oceanogr. 57:698 10.4319/lo.2012.57.3.0698
Bednaršek N., Feely R. A., Reum J. C., Peterson B, Menkel J., Alin S. R., et al. (2014). Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California current ecosystem. Proc. R. Soc. B 281:20140123. 10.1098/rspb.2014.0123 24789895
Bertrand A., Chaigneau A., Peraltilla S., Ledesma J., Graco M., Monetti F., et al. (2011). Oxygen: a fundamental property regulating pelagic ecosystem structure in the coastal southeastern tropical Pacific. PLoS One 6:e29558. 10.1371/journal.pone.0029558 22216315
Bograd S. J., Buil M. P., Di Lorenzo E., Castro C. G., Schroeder I. D., et al. (2015). Changes in source waters to the Southern California Bight. Deep Sea Res. Part II 112 42–52. 10.1016/j.dsr2.2014.04.009
Bograd S. J., Castro C. G., Di Lorenzo E., Palacios D. M., Bailey H., Gilly W., et al. (2008). Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35:L12607.
Breitburg D., Levin L., Oschlies A., Grégoire M., Chavez F., Conley D., et al. (2018). Declining oxygen in the global ocean and coastal waters. Science 359:6371. 10.1126/science.aam7240 29301986
Bristow L. A., Callbeck C. M., Larsen M., Altabet M. A., Dekaezemacker J., Forth M., et al. (2017). N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nat. Geosci. 10 24–29 10.1038/ngeo2847
Burns K. E. A., Kho M. E., (2015). How to assess a survey report: a guide for readers and peer reviewers. Can. Med. Assoc. J. 187 E198–E205.
Chavez F. P., Bertrand A., Guevara-Carrasco R., Soler P., Csirke J., (2008). The northern Humboldt current system: brief history, present status and a view towards the future. (editorial). Prog. Oceanogr. 79 95–105. 10.1016/j.pocean.2008.10.012
Chavez F. P., Ryan J., Lluch-Cota S. E., Ñiquen M., (2003). From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299 217–221. 10.1126/science.1075880 12522241
Craig J. K., (2012). Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 445 75–95. 10.3354/meps09437
Desbiolles F., Blanke B., Bentamy A., Roy C., (2016). Response of the Southern Benguela upwelling system to fine-scale modifications of the coastal wind. J. Mar. Syst. 156 46–55. 10.1016/j.jmarsys.2015.12.002
Feely R. A., Sabine C. L., Martin Hernandez Ayon J., Ianson D., Hales B., (2008). Evidence for upwelling of corrosive “acidified” water onto the Continental Shelf. Science 320 1490–1492. 10.1126/science.1155676 18497259
Gallo N. D., Levin L. A., (2016). Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74 117–198. 10.1016/bs.amb.2016.04.001 27573051
Gibbs M. T., Middleton J. H., Marchesiello P., (1998). Baroclinic response of Sydney shelf waters to local wind and deep ocean forcing. J. Phys. Oceanogr. 28 178–190. 10.1175/1520-0485(1998)028<0178:brossw>2.0.co;2
Graco M., Purca S., Dewitte B., Castro C. G., Morón O., Ledesma J., et al. (2017). The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system. Biogeosciences 14 4601–4617. 10.5194/bg-14-4601-2017
Gregory M. R., (2009). Environmental implications of plastic debris in marine settings –entanglement, ingestion, smothering, hangers-on, hitch-hiking, and alien invasions. Phil. Trans. R. Soc. B 364 2013–2025. 10.1098/rstb.2008.0265 19528053
Gutiérrez D., Enríquez E., Purca S., Quipúzcoa L., Marquina R., Flores G., et al. (2008). Oxygenation episodes on the continental shelf of central Peru: remote forcing and benthic ecosystem response. Prog. Oceanogr. 79 177–189. 10.1016/j.pocean.2008.10.025
Gutiérrez D., Akester M., Naranjo L., (2016). Productivity and sustainable management of the Humboldt current large marine ecosystem under climate change. Environ. Dev. 17(Suppl. 1): 126–144. 10.1016/j.envdev.2015.11.004
Hayes K. R., Clifford D., Moeseneder C., Palmer M., Taranto T., (2012). National Indicators of Marine Ecosystem Health: Mapping Project. A Report Prepared for the Australian Government Department of Sustainability, Environment, Water, Population and Communities. Hobart: CSIRO Wealth from Oceans Flagship.
Hilborn R., Walters C. J., (2013). Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Dordrecht: Springer Science and Business Media.
Juan-Jorda M. J., Murua H., Arrizabalaga H., Hanke A., (2018a). A template for an indicator-based ecosystem report card for ICCAT. Collect. Vol. Sci. Pap. ICCAT 74 3639–3670.
Juan-Jorda M. J., Murua H., Andonegi E., (2018b). An indicator-based ecosystem report card for IOTC – An evolving process. in Proceedings of the 14th Session of the Working Arty on Ecosystem and Bycatch. IOTC–2018–WPEB14–20. 17. Cape Town.
Kämpf J., Chapman P., (2016). Upwelling Systems of the World. Springer:Berlin.
Karstensen J., Stramma L., Visbeck M., (2008). Oxygen minimum zones in the eastern tropical Atlantic and Pacific Oceans. Prog. Oceanogr. 77, 331–350. 10.1016/j.pocean.2007.05.009
Keller A. A., Ciannelli L., Wakefield W. W., Simon V., Barth J. A., Pierce S., (2017). Species-specific responses of demersal fish to near-bottom oxygen levels within the California current large marine ecosystems. Mar. Ecol. Prog. Ser. 568 151–173. 10.3354/meps12066
Keller A. A., Ciannelli L., Wakefield W. W., Simon V., Barth J. A., Pierce S. D., (2015). Occurrence of demersal fishes in relation to near-bottom oxygen levels within the California current large marine ecosystem. Fish. Oceanogr. 24 162–176. 10.1111/fog.12100
Keller A. A., Simon V. H., Chan F., Waldo Wakefield W., Clarke M. E., Barth J A., et al. (2010). Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the U.S. West Coast. Fish. Oceanogr. 19 76–87. 10.1111/j.1365-2419.2009.00529.x
Koslow J. A., Goericke R., Lara-Lopez A., Watson W., (2011). Impact of declining intermediate-water oxygen on deepwater fishes in the California current. Mar. Ecol. Prog. Ser. 436 207–218. 10.3354/meps09270
Koslow J. A., Goericke R., Watson W., (2013). Fish assemblages in the Southern California current: relationships with climate, 1951–2008. Fish. Oceanogr. 22 207–219. 10.1111/fog.12018
Koslow J. A., McMonagle H., Watson W., (2017). Influence of climate on the biodiversity and community structure of fishes in the southern California current. Mar. Ecol. Prog. Ser. 571, 193–206. 10.3354/meps12095
Krosnick J. A., (2018). Assessing the accuracy of survey research in Vannette D., Krosnick J., (eds) The Palgrave Handbook of Survey Research. Cham: Palgrave Macmillan. 10.1007/978-3-319-54395-6_1
Levin L. A., (2003). Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41 1–45.
Luyten J. R., Pedlosky J., Stommel H., (1983). The ventilated thermocline. J. Phys. Oceanogr. 13 292–309. 10.1175/1520-0485(1983)013<0292:tvt>2.0.co;2
McNatt R. A., Rice J. A., (2004). Hypoxia-induced growth rate reduction in two juvenile estuary-dependent fishes. J. Exp. Mar. Biol. Ecol. 311 147–156. 10.1016/j.jembe.2004.05.006
Naqvi S. W. A., Jayakumar D. A., Narvekar P. V., Naik H., Sarma V. V. S. S., D’Souza W., Joseph S., Georg M. D., (2000). Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408 346–349. 10.1038/35042551 11099038
Naqvi S. W. A., Naik H., Jayakumar D. A., Pratihary A. K., Narvenkar G., Kurian S., et al. (2009). Seasonal anoxia over the western Indian continental shelf. Geophys. Monogr. Ser. 185 333–345. 10.1029/2008gm000745
Naqvi S. W. A., Naik H., Jayakumar D. A., Shailaja M. S., Narvekar P. V., (2006). Seasonal oxygen deficiency over the western continental shelf of India. in Past and Present Water Column Anoxia, ed Neretin LN, 195–224. (Dordrecht: Springer). 10.1007/1-4020-4297-3_08
Neilan R. M., Rose K., (2014). Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp. J. Theoret. Biol. 343 54–68. 10.1016/j.jtbi.2013.11.004 24269807
Palacz A. P., Pearlman J., Simmons S., Hill K., Miloslavich P., Telszewski M., et al. (2017a). Report of the Workshop on the Implementation of Multi-Disciplinary Sustained Ocean Observations (IMSOO). Global Ocean Observing System (GOOS) Report No. 223. Available at: www.goosocean.org/imsoo-report (accessed October 1, 2018).
Palacz A. P., Telszewski M., Garçon V., Karstensen J., (2017b). Report of the Variability in the Oxycline and Its Impacts on the Ecosystem (VOICE) Science Plan Workshop. GOOS Report No. 224. Available at: www.goosocean.org/voice-mbari-report (accessed October 1, 2018).
Palóczy A., Silveira I., Castro B. M., Calado L., (2014). Coastal upwelling off Cape São Tomé (22°S, Brazil): the supporting role of deep ocean processes. Continental Shelf Res. 89 38–50. 10.1016/j.csr.2013.09.005
Paulmier A., Ruiz-Pino D., (2009). Oxygen minimum zones in the modern ocean. Prog. Oceanogr. 80 113–128. 10.1016/j.pocean.2008.08.001
Pauly D., Christensen V., (1995). Primary production required to sustain global fisheries. Nature 374: 255–257. 10.1038/374255a0
Pearlman J., Buttigieg P. L., Simpson P., MunЬoz C., Hesop E., Hermes J., (2017). Accessing existing and emerging best practices for ocean observation, a new approach for end-to-end management of best practices. in Proceedings of the Oceans’17, Anchorage: Conference, MTS/IEEE, Anchorage, AK. 1–7.
Pearlman J., Bushnell M., Coppola L., Karstensen J., Buttigieg P. L., Pearlman F., et al. (2019). Evolving and sustaining ocean best practices and standards for the next decade. Front. Mar. Sci. 6:277. 10.3389/fmars.2019.00277
Porter M. E., (1985). Competitive Advantage: Creating and Sustaining Superior Performance. New York, NY: Simon and Schuster.
Prakash S., Balakrishnan Nair T. M., Udaya Bhaskar T. V. S., Prakash P., Gilbert D., (2012). Oxycline variability in the Central Arabian Sea: an ARGO oxygen study. J. Sea Res. 71 1–8. 10.1016/j.seares.2012.03.003
Prince E. D., Goodyear C. P., (2006). Hypoxia-based habitat compression of tropical pelagic fishes. Fish. Oceanog. 15 451–464. 10.1111/j.1365-2419.2005.00393.x
Purca S., Graco M., Gutiérrez D., Dewitte B., Tam J., Bertrand A., et al. (2010). Relación entre anchoveta y ambiente a diferentes escalas temporales. Bol. Inst. Mar Perú 25 13–22.
Rose K. A., Adamack A. T., Murphy C. A., Sable S. E., Kolesar S. E., Craig J. K., et al. (2009). Does hypoxia have population-level effects on coastal fish? Musings from the virtual world. J. Exp. Mar. Biol. Ecol. 381 S188–S203.
Rose K. A., Cowan J. H., Winemiller K. O., Myers R. A., Hilborn R., (2001). Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish. 2 293–327. 10.1046/j.1467-2960.2001.00056.x
Rose K. A., Gutierrez Aguilar D., Breitburg D., Conley D., Craig J. K., Froehlich H. E., et al. (2019). Impacts of ocean deoxygenation on ecosystem services: fisheries. in Laffoley D., Baxter J.M., (eds.) Ocean Deoxygenation: Everyone’s Problem - Causes, Impacts, Consequences and Solutions. Gland: IUCN. 519–544.
Salvanes A. G. V., Christiansen H., Tahaa Y., Henselera C., Seivåg M. L., Kjesbu O. S., Folkvord A., et al. (2018). Variation in growth, morphology and reproduction of the bearded goby (Sufflogobius bibarbatus) in varying oxygen environments of northern Benguela. J. Mar. Syst. 188 81–97. 10.1016/j.jmarsys.2018.04.003
Sato K. N., Levin L. A., Schiff K., (2017). Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994-2013). Deep Sea Res. Part II 137 377–389. 10.1016/j.dsr2.2016.08.012
Schmidtko S., Stramma L., Visbeck M., (2017). Decline in global oceanic oxygen content during the past five decades. Nature 542 335–339. 10.1038/nature21399 28202958
Stramma L., Prince E. D., Schmidtko S., Luo J., Hoolihan J. P., Visbeck M., et al. (2011). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2 33–37. 10.1038/nclimate1304
Tchipalanga P., Dengler M., Brandt P., Kopte R., Macuéria M., Coelho P., Ostrowski M., Keenlyside N. S., (2018). Eastern boundary circulation and hydrography off angola: building angolan oceanographic capacities. Bull. Am. Meteor. Soc. 99 1589–1605. 10.1175/BAMS-D-17-0197.1
Thomas P., Rahman M. S., Picha M. E., Tan W., (2015). Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km2 hypoxic region in the northern Gulf of Mexico. Mar. Pollut. Bull. 101 182–192. 10.1016/j.marpolbul.2015.11.001 26547103
Ulloa O., Canfield D. E., DeLong E. F., Letelier R. M., Stewart F. J., (2012). Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. U.S.A. 109, 15996–16003. 10.1073/pnas.1205009109 22967509
Ulloa O., Pantoja S., (2009). The oxygen minimum zone of the eastern South Pacific, Deep Sea Res. Part II 56 987–991
UNESCO (2012). FOO: Framework for Ocean Observing By the Task Team for an Integrated Framework for Sustained Ocean Observing, UNESCO 2012, IOC/INF-1284. Paris: UNESCO. 10.5270/OceanObs09-FOO
Vaquer-Sunyer R., Duarte C. M., (2008). Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U.S.A. 105 15452–15457. 10.1073/pnas.0803833105 18824689
Wu R. S., (2002). Hypoxia: from molecular responses to ecosystem responses. Mar. Pollut. Bull. 45 35–45 10.1016/s0025-326x(02)00061-9 12398365
Wyrtki K., (1962). The oxygen minima in relation to ocean circulation. Deep Sea Res. I 9 11–23. 10.1016/0011-7471(62)90243-7 22573769