Article (Scientific journals)
The frontier of simulation-based inference
Cranmer, Kyle; Brehmer, Johann; Louppe, Gilles
2020In Proceedings of the National Academy of Sciences of the United States of America
Peer Reviewed verified by ORBi
 

Files


Full Text
1911.01429.pdf
Author preprint (859.01 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Statistical inference; Implicit models; Likelihood-free inference; Approximate Bayesian Computation; Neural density estimation
Abstract :
[en] Many domains of science have developed complex simulations to describe phenomena of interest. While these simulations provide high-fidelity models, they are poorly suited for inference and lead to challenging inverse problems. We review the rapidly developing field of simulation-based inference and identify the forces giving new momentum to the field. Finally, we describe how the frontier is expanding so that a broad audience can appreciate the profound change these developments may have on science.
Disciplines :
Physics
Computer science
Author, co-author :
Cranmer, Kyle
Brehmer, Johann
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Language :
English
Title :
The frontier of simulation-based inference
Publication date :
29 May 2020
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ISSN :
0027-8424
eISSN :
1091-6490
Publisher :
National Academy of Sciences, Washington DC, United States - District of Columbia
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 25 November 2019

Statistics


Number of views
75 (2 by ULiège)
Number of downloads
62 (0 by ULiège)

Scopus citations®
 
436
Scopus citations®
without self-citations
421
OpenCitations
 
141
OpenAlex citations
 
576

Bibliography


Similar publications



Contact ORBi