Article (Scientific journals)
Using supervised learning machine algorithm to identify future fallers based on gait patterns: A two-year longitudinal study
Gillain, Sophie; Boutaayamou, Mohamed; Schwartz, Cédric et al.
2019In Experimental Gerontology, 127 (first online)
Peer Reviewed verified by ORBi
 

Files


Full Text
Using supervised learning machine algorithm to identify future fallers based on gait patterns - a two-year longitudinal study.pdf
Publisher postprint (532.53 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Classification; Fall risk; Older adults; Prospective; Supervise machine learning algorithm
Abstract :
[en] Introduction: Given their major health consequences in the elderly, identifying people at risk of fall is a major challenge faced by clinicians. A lot of studies have confirmed the relationships between gait parameters and falls incidence. However, accurate tools to predict individual risk among independent older adults without a history of falls are lacking. Objective: This study aimed to apply a supervised learning algorithm to a data set recorded in a two-year longitudinal study, in order to build a classification tree that could discern subsequent fallers based on their gait patterns. Methods: A total of 105 adults aged >65 years, living independently at home and without a recent fall history were included in a two-year longitudinal study. All underwent physical and functional assessment. Gait speed, stride length, frequency, symmetry and regularity, and minimum toe clearance were recorded in comfortable, fast and dual task walking conditions in a standardized laboratory environment. Fall events were recorded using personal falls diaries. A supervised machine learning algorithm (J48) has been applied to the data recorded at inclusion in order to obtain a classification tree able to identify future fallers. Results: Based on fall information from 96 volunteers, a classification tree correctly identifying 80% of future fallers based on gait patterns, gender, and stiffness, was obtained, with accuracy of 84%, sensitivity of 80%, specificity of 87%, a positive predictive value of 78%, and a negative predictive value of 88%. Discussion: While the performances of the classification tree warrant further confirmation, it is the first predictive tool based on gait parameters that are identified (not clustered) allowing its use by other research teams. Conclusion: This original longitudinal pilot study using a supervised machine learning algorithm, shows that gait parameters and clinical data can be used to identify future fallers among independent older adults. © 2019 Elsevier Inc.
Disciplines :
Public health, health care sciences & services
Geriatrics
Author, co-author :
Gillain, Sophie ;  Université de Liège - ULiège > Département des sciences cliniques > Gériatrie
Boutaayamou, Mohamed ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Schwartz, Cédric  ;  Université de Liège - ULiège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Bruls, Olivier  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Bruyère, Olivier  ;  Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Croisier, Jean-Louis  ;  Université de Liège - ULiège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Salmon, Eric  ;  Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalid. cogn.
Reginster, Jean-Yves  ;  Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Garraux, Gaëtan  ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie du système nerveux
Petermans, Jean ;  Université de Liège - ULiège > Département des sciences cliniques > Gériatrie
Language :
English
Title :
Using supervised learning machine algorithm to identify future fallers based on gait patterns: A two-year longitudinal study
Publication date :
2019
Journal title :
Experimental Gerontology
ISSN :
0531-5565
eISSN :
1873-6815
Publisher :
Elsevier Inc.
Volume :
127
Issue :
first online
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 13 November 2019

Statistics


Number of views
118 (20 by ULiège)
Number of downloads
13 (8 by ULiège)

Scopus citations®
 
13
Scopus citations®
without self-citations
12
OpenCitations
 
6
OpenAlex citations
 
13

Bibliography


Similar publications



Contact ORBi