Guidolin, A. S.; Insect Interactions Laboratory, Department of Entomology and Acarology, ESALQ, University of São Paulo, Av. Pádua Dias 11, São Paulo, Piracicaba, Brazil
Cataldi, T. R.; Max Feffer Laboratory of Plant Genetics, Department of Genetics, ESALQ, University of São Paulo, Av. Pádua Dias 11, São Paulo, Piracicaba, Brazil
Labate, C. A.; Max Feffer Laboratory of Plant Genetics, Department of Genetics, ESALQ, University of São Paulo, Av. Pádua Dias 11, São Paulo, Piracicaba, Brazil
Francis, Frédéric ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Gestion durable des bio-agresseurs
Cônsoli, F. L.; Insect Interactions Laboratory, Department of Entomology and Acarology, ESALQ, University of São Paulo, Av. Pádua Dias 11, São Paulo, Piracicaba, Brazil
Language :
English
Title :
Spiroplasma affects host aphid proteomics feeding on two nutritional resources
Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. P. Natl. Acad. Sci. USA 104, 8627-8633 (2007).
Cilia, M. et al. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J. Virol. 85, 2148-2166 (2011).
Hansen, A. K. &Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Molec. Ecol. 23, 1473-1496 (2014).
Buchner, P. Endosymbiosis of animals with plant microorganisms. (ed. Wiley, J) 909p (Interscience Publishers, 1965).
Douglas, A. E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria B. aphidicola. Ann. Rev. Entomol. 43, 17-37 (1998).
Chen, D. Q. &Purcell, A. H. Occurrence and transmission of facultative endosymbionts in aphids. Curr. Microbiol. 34, 220-225 (1997).
Tsuchida, T., Nikoh, N., Kawai, R. &Koga, R. Secondary endosymbiotic microbiota of the pea aphid, Acyrthosiphon pisum, in natural populations. Aphids in a New Millennium, 93-96 (2004).
Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. &Ochman, H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. P. Natl. Acad. Sci. USA 102, 16919-16926 (2005).
Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Ann. Rev. Entomol. 60, 17-34 (2014).
Zytynska, S. E. &Weisser, W. W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 41, 13-26 (2016).
Chandler, S. M., Wilkinson, T. L. &Douglas, A. E. Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria. Proc. R. Soc. London-B 275, 565-570 (2008).
Su, Q., Zhou, X. &Zhang, Y. Symbiont-mediated functions in insect hosts. Commun. Integr. Biol. 6, 23804-23804 (2013).
McLean, A. H. C., van Asch, M., Ferrari, J. &Godfray, H. C. Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc. R. Soc. London-B 278, 760-766 (2011).
Ferrari, J., West, J. A., Via, S. &Godfray, H. C. J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375-390 (2012).
Francis, F. et al. Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochem. Molec. Biol. 36, 219-227 (2006).
Nguyen, T. T. A., Michaud, D. &Cloutier, C. Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plantmediated stress induced by defoliation and water deficit. J. Insect Physiol. 53, 601-611 (2007).
Francis, F. et al. Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: Investigation by a proteomic approach. J. Insect Physiol. 56, 575-585 (2010).
Elzinga, D. A., De Vos, M. &Jander, G. Suppression of plant defenses by a Myzus persicae (Green Peach Aphid) salivary effector protein. Mol. Plant Microbe 27, 747-756 (2014).
Vandermoten, S. et al. Comparative analyses of salivary proteins from three aphid species. Insect Molec. Biol. 23, 67-77 (2014).
Gasparich, G. E. Spiroplasmas and Phytoplasmas: Microbes associated with plant hosts. Biologicals 38, 193-203 (2010).
Haselkorn, T. S. The Spiroplasma heritable bacterial endosymbiont of Drosophila. Fly 4, 80-87 (2010).
Ventura, I. M. et al. Spiroplasma in Drosophila melanogaster populations: prevalence, male-killing, molecular identification, and no association with Wolbachia. Microb. Ecol. 64, 794-801 (2012).
Jaenike, J., Unckless, R. L., Cockburn, S. N., Boelio, L. M. &Perlman, S. J. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329, 212-215 (2010).
Cockburn, S. N. et al. Dynamics of the continent-wide spread of a Drosophila defensive symbiont. Ecol. Lett. 16, 609-616 (2013).
Xie, J., Vilchez, I. &Mateos, M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5, https://doi.org/10.1371/journal.pone.0012149 (2010).
Xie, J., Butler, S., Sanchez, G. &Mateos, M. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112, 399-408 (2014).
Fukatsu, T., Tsuchida, T., Nikoh, N. &Koga, R. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl. Environ. Microbiol. 67, 1284-1291 (2001).
Lukasik, P., Guo, H., van Asch, M., Ferrari, J. &Godfray, H. C. 2013. Protection against a fungal pathogen conferred by the aphid facultative endosymbionts Rickettsia and Spiroplasma is expressed in multiple host genotypes and species and is not influenced by co-infection with another symbiont. J. Evol. Biol. 26, 2654-2661 (2013).
Russell, J. A. et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Molec. Ecol. 22, 2045-2059 (2013).
Brady, C. M. et al. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67, 195-204 (2014).
Guidolin, A. S. &Cônsoli, F. L. Diversity of the most commonly reported facultative symbionts in two closely-related aphids with different host ranges. Neotr. Entomol. https://doi.org/10.1007/s13744-017-0532-0 (2017).
Halbert, S. E. &Brown, L. G. Brown Citrus Aphid, Toxoptera citricida (Kirkaldy) (Insecta: Hemiptera: Aphididae). Florida: University of Florida IFAS Extension (2011).
Guidolin, A. S. Multipartite interactions of Aphis (Toxoptera) and their associated symbionts. Thesis: Escola Superior de Agricultura "Luiz de Queiroz". available In, http://www.teses.usp.br/teses/disponiveis/11/11146/tde-26092016-095921/ (2016).
Feder, M. E. &Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Ann. Rev. Physiol. 61, 243-282 (1999).
Kaufmann, S. H. E. Heat-shock proteins and the immune-respose. Immunol. Today 11, 129-136 (1990).
King, A. M. &Macrae, T. H. Insect heat shock proteins during stress and diapause. Ann. Rev. Entomol. 60, 59-75 (2015).
Schlesinger, M. J. Heat-shock proteins. J. Biol. Chem. 265, 12111-12114 (1990).
Otvos, L. O. I. Jr. et al. Interaction between heat shock proteins and antimicrobial peptides. Biochem. 39, 14150-14159 (2000).
Pockley, A. G. Heat shock proteins as regulators of the immune response. Lancet 362, 469-476 (2003).
Li, Y., Xiang, Q., Zhang, Q., Huang, Y. &Su, Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37, 207-215 (2012).
Kragol, G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase action of DnaK and prevents chaperone-assisted protein folding. Biochem. 40, 3016-3026 (2004).
Roy, R. N., Lomakin, I. B., Gagnon, M. G. &Steitz, T. A. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat. Struct. Mol. Biol. 22, 466-469 (2015).
Taniguchi, M. et al. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. J. Biosci. Bioeng. 121, 591-598 (2016).
Haft, D. H. &Basu, M. K. Biological systems discovery in silico: radical S-Adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745-2755 (2011).
Hansen, A. K. &Moran, N. A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. P. Natl. Acad. Sci. USA 108, 2849-2854 (2011).
Price, D. R. G. et al. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. P. Natl. Acad. Sci. USA 111, 320-325 (2014).
Russell, C. W. et al. Matching the supply of bacterial nutrients to the nutritional demand of the animal host. Proc. R. Soc. London-B 281, https://doi.org/10.1098/rspb.2014.1163 (2014).
Viola, R. E. The central enzymes of the aspartate family of amino acid biosynthesis. Acc. Chem. Res. 34, 339-349 (2001).
Dowling, D. K. &Simmons, L. W. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. London-B 276, 1737-1745 (2009).
Wolf, D. H. &Hilt, W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta Molec. Cell Res. 1695, 19-31 (2004).
Kleiger, G. &Mayor, T. Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol. 24, 352-359 (2014).