Plant-Mediated Interactions between Two Cereal Aphid Species: Promotion of Aphid Performance and Attraction of More Parasitoids by Infestation of Wheat with Phytotoxic Aphid Schizaphis graminum
Zhang, Y.; Fan, J.; Fu, Y.et al.
2019 • In Journal of Agricultural and Food Chemistry
Zhang, Y.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
Fan, J.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
Fu, Y.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
Francis, Frédéric ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Gestion durable des bio-agresseurs
Chen, J.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
Language :
English
Title :
Plant-Mediated Interactions between Two Cereal Aphid Species: Promotion of Aphid Performance and Attraction of More Parasitoids by Infestation of Wheat with Phytotoxic Aphid Schizaphis graminum
Karban, R. A.; Myers, J. H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331-348, 10.1146/annurev.es.20.110189.001555
Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant defense against insect herbivores. Int. J. Mol. Sci. 2013, 14, 10242-10297, 10.3390/ijms140510242
Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C.; Villarroel, C. A.; Ataide, L. M.; Dermauw, W.; Glas, J. J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R. C.; Sabelis, M. W.; Alba, J. M. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann. Bot. 2015, 115, 1015-1051, 10.1093/aob/mcv054
Aljbory, Z.; Chen, M. S. Indirect plant defense against insect herbivores: a review. Insect Sci. 2018, 25, 2-23, 10.1111/1744-7917.12436
Pare, P. W.; Tumlinson, J. H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325-331, 10.1104/pp.121.2.325
Berens, M. L.; Berry, H. M.; Mine, A.; Argueso, C. T.; Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 2017, 55, 401-405, 10.1146/annurev-phyto-080516-035544
Smith, J. L.; De Moraes, C. M.; Mescher, M. C. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manage. Sci. 2009, 65, 497-503, 10.1002/ps.1714
Züst, T.; Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nature Plants 2016, 2, 15206, 10.1038/nplants.2015.206
Jaouannet, M.; Rodriguez, P. A.; Thorpe, P.; Lenoir, C. J. G.; MacLeod, R.; Escudero-Martinez, C.; Bos, J. I. Plant immunity in plant-aphid interactions. Front. Plant Sci. 2014, 5, 663, 10.3389/fpls.2014.00663
Kaloshian, I.; Walling, L. L. Hemipterans as plant pathogens. Annu. Rev. Phytopathol. 2005, 43, 491-521, 10.1146/annurev.phyto.43.040204.135944
Wilson, A. C. C.; Sternberg, L. d. S. L.; Hurley, K. B. Aphids alter host-plant nitrogen isotope fractionation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10220-10224, 10.1073/pnas.1007065108
Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17-34, 10.1146/annurev-ento-010814-020822
Telang, A.; Sandström, J.; Dyreson, E.; Moran, N. A. Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomol. Exp. Appl. 1999, 91, 403-412, 10.1046/j.1570-7458.1999.00508.x
Cao, H. H.; Liu, H. R.; Zhang, Z. F.; Liu, T. X. The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci. Rep. 2016, 6, 21954, 10.1038/srep21954
Strauss, S. Y. Direct, indirect, and cumulative effects of three native herbivores on a shared host plant. Ecology 1991, 72, 543-558, 10.2307/2937195
Vos, M.; Berrocal, S. M.; Karamaouna, F.; Hemerik, L.; Vet, L. E. M. Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecol. Lett. 2001, 4, 38-45, 10.1046/j.1461-0248.2001.00191.x
Zhang, P. J.; Zheng, S. J.; van Loon, J. J.; Boland, W.; David, A.; Mumm, R.; Dicke, M. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 21202-21207, 10.1073/pnas.0907890106
Soler, R.; Badenes-Pérez, F. R.; Broekgaarden, C.; Zheng, S. J.; David, A.; Boland, W.; Dicke, M. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct. Ecol. 2012, 26, 156-166, 10.1111/j.1365-2435.2011.01902.x
Glas, J. J.; Alba, J. M.; Simoni, S.; Villarroel, C. A.; Stoops, M.; Schimmel, B. C.; Schuurink, R. C.; Sabelis, M. W.; Kant, M. R. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biol. 2014, 12, 98, 10.1186/s12915-014-0098-9
Pappas, M. L.; Steppuhn, A.; Geuss, D.; Topalidou, N.; Zografou, A.; Sabelis, M. W.; Broufas, G. D. Beyond predation: the zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS One 2015, 10, e0127251 10.1371/journal.pone.0127251
Zhang, N. X.; Messelink, G. J.; Alba, J. M.; Schuurink, R. C.; Kant, M. R.; Janssen, A. Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 2018, 186, 101-113, 10.1007/s00442-017-4000-7
Hu, X. S.; Liu, X. F.; Thieme, T.; Zhang, G. S.; Liu, T. X.; Zhao, H. Y. Testing the fecundity advantage hypothesis with Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum (Hemiptera: Aphididae) feeding on ten wheat accessions. Sci. Rep. 2016, 5, 18549, 10.1038/srep18549
Miles, P. W. Aphid saliva. Biol. Rev. 1999, 74, 41-85, 10.1111/j.1469-185X.1999.tb00181.x
Nicholson, S. J.; Hartson, S. D.; Puterka, G. J. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia, Kurd.) biotypes that differ in virulence to wheat. J. Proteomics 2012, 75, 2252-2268, 10.1016/j.jprot.2012.01.031
Nicholson, S. J.; Puterka, G. J. Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. J. Proteomics 2014, 105, 186-203, 10.1016/j.jprot.2013.12.005
Han, Y.; Wang, Y.; Bi, J. L.; Yang, X. Q.; Huang, Y.; Zhao, X.; Hu, Y.; Cai, Q. N. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J. Chem. Ecol. 2009, 35, 176-182, 10.1007/s10886-009-9589-5
Wang, C. F.; Huang, L. L.; Buchenauer, H.; Han, Q. M.; Zhang, H. C.; Kang, Z. S. Histochemical studies on the accumulation of reactive oxygen species (O 2 - and H 2 O 2 ) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 2007, 71, 230-239, 10.1016/j.pmpp.2008.02.006
Ferguson, I. B.; Watkins, C. B.; Harman, J. E. Inhibition by calcium of senescence of detached cucumber cotyledons effect on ethylene and hydroperoxide production. Plant Physiol. 1983, 71, 182-186, 10.1104/pp.71.1.182
Zhao, L. Y.; Chen, J. L.; Cheng, D. F.; Sun, J. R.; Liu, Y.; Tian, Z. Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Prot. 2009, 28, 435-442, 10.1016/j.cropro.2009.01.005
Zhang, Y.; Fan, J.; Francis, F.; Chen, J. L. Watery saliva secreted by the grain aphid Sitobion avenae stimulates aphid resistance in wheat. J. Agric. Food Chem. 2017, 65, 8798-8805, 10.1021/acs.jafc.7b03141
Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -Î"Î"CT method. Methods 2001, 25, 402-408, 10.1006/meth.2001.1262
Liu, X.; Meng, J.; Starkey, S.; Smith, C. M. Wheat gene expression is differentially affected by a virulent Russian wheat aphid biotype. J. Chem. Ecol. 2011, 37, 472-482, 10.1007/s10886-011-9949-9
Zhang, K.; Halitschke, R.; Yin, C.; Liu, C. J.; Gan, S. S. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 14807-14812, 10.1073/pnas.1302702110
Morris, K.; Mackerness, S. A. H.; Page, T.; John, C. F.; Murphy, A. M.; Carr, J. P.; Buchanan-Wollaston, V. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 2000, 23, 677-685, 10.1046/j.1365-313x.2000.00836.x
Donovan, M. P.; Nabity, D. P.; Delucia, E. H. Salicylic acid-mediated reductions in yield in Nicotiana attenuata challenged by aphid herbivory. Arthropod Plant Interact. 2013, 7, 45-52, 10.1007/s11829-012-9220-5
Heidel, A. J.; Baldwin, I. T. Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant, Cell Environ. 2004, 27, 1362-1373, 10.1111/j.1365-3040.2004.01228.x
De Vos, M.; Jander, G. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell Environ. 2009, 32, 1548-1560, 10.1111/j.1365-3040.2009.02019.x
Rao, S. A. K.; Carolan, J. C.; Wilkinson, T. L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 2013, 8, e57413 10.1371/journal.pone.0057413
Vandermoten, S.; Harmel, N.; Mazzucchelli, G.; De Pauw, E.; Haubruge, E.; Francis, F. Comparative analyses of salivary proteins from three aphid species. Insect Mol. Biol. 2014, 23, 67-77, 10.1111/imb.12061
Thorpe, P.; Cock, P. J. A.; Bos, J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics 2016, 17, 172, 10.1186/s12864-016-2496-6
Ma, R.; Chen, J. L.; Cheng, D. F.; Sun, J. R. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. J. Agric. Food Chem. 2010, 58, 2410-2418, 10.1021/jf9037248
Ciuffetti, L. M.; Manning, V. A.; Pandelova, I.; Betts, M. F.; Martinez, J. P. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici- repentis-wheat interaction. New Phytol. 2010, 187, 911-919, 10.1111/j.1469-8137.2010.03362.x
Stout, M. J.; Workman, K. V.; Bostock, R. M.; Duffey, S. S. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 1997, 113, 74-81, 10.1007/s004420050355
Gao, L. L.; Anderson, J. P.; Klingler, J. P.; Nair, R. M.; Edwards, O. R.; Singh, K. B. Involvement of the octadecanoid pathway in blue green aphid resistance in Medicago truncatula. Mol. Plant-Microbe Interact. 2007, 20, 82-93, 10.1094/MPMI-20-0082
Thaler, J. S.; Humphrey, P. T.; Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260-270, 10.1016/j.tplants.2012.02.010
Moran, P. J.; Thompson, G. A. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol. 2001, 125, 1074-1085, 10.1104/pp.125.2.1074
Pegadaraju, V.; Knepper, C.; Reese, J.; Shah, J. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 2005, 139, 1927-1934, 10.1104/pp.105.070433
Thompson, G. A.; Goggin, F. L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 2006, 57, 755-766, 10.1093/jxb/erj135
Goggin, F. L. Plant-aphid interactions: molecular and ecological perspectives. Curr. Opin. Plant Biol. 2007, 10, 399-408, 10.1016/j.pbi.2007.06.004
Sandström, J.; Telang, A.; Moran, N. Nutritional enhancement of host plants by aphids-a comparison of three aphid species on grasses. J. Insect Physiol. 2000, 46, 33-40, 10.1016/S0022-1910(99)00098-0
Zeier, J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell Environ. 2013, 36, 2085-2103, 10.1111/pce.12122
Shah, J. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 2003, 6, 365-371, 10.1016/S1369-5266(03)00058-X
Ogawa, D.; Nakajima, N.; Seo, S.; Mitsuhara, I.; Kamada, H.; Ohashi, Y. The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves. Plant Biotechnol. 2006, 23, 395-398, 10.5511/plantbiotechnology.23.395
Kamachi, K.; Yamaya, T.; Mae, T.; Ojima, K. A role for glutamine synthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiol. 1991, 96, 411-417, 10.1104/pp.96.2.411
Avilaospina, L.; Marmagne, A.; Talbotec, J.; Krupinska, K.; Masclaux-Daubresse, C. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence. J. Exp. Bot. 2015, 66, 2013-2026, 10.1093/jxb/erv003
Machado-Assefh, C. R.; Lucatti, A. F.; Alvarez, A. E. Induced senescence promotes the feeding activities and nymph development of Myzus persicae (Hemiptera: Aphididae) on potato plants. J. Insect Sci. 2014, 14, 155, 10.1093/jisesa/ieu017
Fisher, M. The effect of previously infested spruce needles on the growth of the green spruce aphid, Elatobium abietinum, and the effect of the aphid on the amino acid balance of the host plant. Ann. Appl. Biol. 1987, 111, 33-41, 10.1111/j.1744-7348.1987.tb01430.x
Turlings, T. C. J.; Tumlinson, J. H.; Lewis, W. J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 1990, 250, 1251-1253, 10.1126/science.250.4985.1251
Zhu, J.; Park, K. C. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 2005, 31, 1733-1746, 10.1007/s10886-005-5923-8
Prokopy, R. J.; Owens, E. D. Visual Detection of Plants by Herbivorous Insects. Annu. Rev. Entomol. 1983, 28, 337-364, 10.1146/annurev.en.28.010183.002005
Döring, T. F. How aphids find their host plants, and how they don't. Ann. Appl. Biol. 2014, 165, 3-26, 10.1111/aab.12142
Ode, P. J.; Hopper, K. R.; Coll, M. Oviposition vs. offspring fitness in Aphidius colemani parasitizing different aphid species. Entomol. Exp. Appl. 2005, 115, 303-310, 10.1111/j.1570-7458.2005.00261.x
Pan, M. Z.; Liu, T. X. Suitability of three aphid species for Aphidius gifuensis, (Hymenoptera: Braconidae): Parasitoid performance varies with hosts of origin. Biol. Control 2014, 69, 90-96, 10.1016/j.biocontrol.2013.11.007
Vet, L. E. M.; Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 1992, 37, 141-172, 10.1146/annurev.en.37.010192.001041
Yang, S.; Xu, R.; Yang, S. Y.; Kuang, R. P. Olfactory responses of Aphidius gifuensis to odors of host plants and aphid-plant complexes. Insect Sci. 2009, 16, 503-510, 10.1111/j.1744-7917.2009.01282.x
De Moraes, C. M.; Lewis, W. J.; Paré, P. W.; Alborn, H. T.; Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature 1998, 393, 570-573, 10.1038/31219
Birkett, M. A.; Chamberlain, K.; Guerrieri, E.; Pickett, J. A.; Wadhams, L. J.; Yasuda, T. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 2003, 29, 1589-1600, 10.1023/A:1024218729423