Salmo salar; Downstream migration; Fish trajectory; Fish telemetry; Fish passage; Archimedes screw
Abstract :
[en] We studied downstream migration behaviour of Atlantic salmon smolt at a hydropower station that offers four safe (weir, new incision gate on weir, downstream bypass, Archimedes screw) and one potentially unsafe (Kaplan turbines) migration routes. We followed hatchery smolts using radio (n = 17) and RFID (n = 200) telemetry. They were released 1.2 km upstream of the hydropower station in spring 2018, in four groups, at different water discharge (18 to 37.2 m3s-1) and temperature (12.2–17.6 °C) conditions. For radio-tagged smolts, the repartition of the migration routes was 41.2% for the bypass, 17.6% for both the Kaplan turbine and the weir, 11.8% for the Archimedes screw, 0% for the new incision and 11.8% of unknown route. For the RFID-tagged smolts, the repartition was 38.0% for the bypass, 56.5% for the weir and/or the Kaplan, 4.5% for the new incision and 1.0% for the Archimedes Screw. The median time to cross the hydropower station was 58 min, and 88.2% of the smolts succeed to continue their downstream migration. The results demonstrate a diversity of choices of migration routes and underline the importance to optimise the position of fish-friendly turbines and fish passes at hydropower stations to increase their attractiveness.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Benitez, Jean-Philippe ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire de Démographie des poissons et hydroécologie
Tauzin, Amandine
Dierckx, Arnaud ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire de Démographie des poissons et hydroécologie
Nzau Matondo, Billy ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire de Démographie des poissons et hydroécologie
Ovidio, Michaël ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire de Démographie des poissons et hydroécologie
Language :
English
Title :
How and where to pass? Atlantic salmon smolt’s behaviour at a hydropower station offering multiple migration routes
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aarestrup, K., C. Nielsen & A. Koed, 2002. Net ground speed of downstream migrating radio-tagged Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) smolts in relation to environmental factors. Hydrobiologia 483: 95–102.
Albayrak, I., C. R. Kriewitz, W. H. Hager & R. M. Boes, 2018. An experimental investigation on louvres and angled bar racks. Journal of Hydraulic Research 56: 59–75.
Benitez, J. P., B. Nzau Matondo, A. Dierckx & M. Ovidio, 2015. An overview of potamodromous fish upstream movements in medium-sized rivers, by means of fish passes monitoring. Aquatic Ecology 49: 481–497.
Benitez, J. P., A. Dierckx, B. Nzau Matondo, X. Rollin & M. Ovidio, 2018. Movement behaviours of potamodromous fish within a large anthropised river after the reestablishment of the longitudinal connectivity. Fisheries Research 207: 140–149.
Brackley, R., M. C. Lucas, R. Thomas, C. E. Adams & C. W. Bean, 2018. Comparison of damage to live v. euthanized Atlantic salmon (Salmo salar) smolts from passage through an Archimedean screw turbine. Journal of fish biology 92: 1635–1644.
Brevé, N., H. Vis, I. Spierts, G. de Laak, F. Moquette & A. Breukelaar, 2014. Exorbitant mortality of hatchery-reared Atlantic salmon smolts (Salmo salar L.), in the Meuse river system in the Netherlands. Journal of Coastal Conservation 18: 97–109.
Brown, R. S., B. D. Pfugrath, A. H. Colotelo, C. J. Brauner, T. J. Carslon, Z. D. Deng & A. G. Seaburg, 2012. Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law. Fisheries Research 121(122): 43–50.
Calles, O., S. Karlsson, M. Hebrand & C. Comoglio, 2012. Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant. Ecological Engineering 48: 30–37.
Castro-Santos, T. & R. W. Perry, 2012. Time-to-event analysis as a framework for quantifying fish passage performance. In Adams, N. S., J. W. Beeman & J. Eiler (eds), Telemetry Techniques. American Fisheries Society, Bethesda: 427–452.
Cefas, A., 2012. Assessment of Damage to Smolts Caused by Archimedes Screw Hydropower Turbines. T. R. I. Potter, P. Davison & A. Moore, Lowestoft.
Cheng, Y. W. & M. P. Gallinat, 2014. Statistical analysis of the relationship among environmental variables, inter-annual variability and smolt trap efficiency of salmonids in the Tucannon River. Fisheries Research 70: 229–238.
Conrad, J. L., T. B. Weinersmith, T. Brodin & A. Sih, 2011. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. Journal of Fish Biology 78(2): 395–435.
Coutant, C. C. & R. R. Whitney, 2000. Fish behavior in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society 129: 351–380.
ECOGEA, 2010. Test for evaluating the injuries suffered by downstream-migrating eels in their transiting through the new spherical discharge ring VLH turbogenerator unit installed on the Moselle river in Frouard. T. Lagarrigue & A. Frey, Toulouse.
Fjeldstad, H. P., I. Uglem, O. H. Diserud, P. Fiske, T. Forseth, E. Kvingedal, et al., 2012. A concept for improving Atlantic salmon (Salmo salar) smolt migration past hydro power intakes. Journal of Fish Biology 81: 642–663.
Fjeldstad, H. P., K. Alfredsen & T. Boissy, 2014. Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river. Fisheries Management and Ecology 21: 22–31.
Fjeldstad, H. P., K. U. Pulg & T. Forseth, 2018. Safe two-way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best-practice solutions. Marine and Freshwater Research. 10.1071/MF18120.
Fu, T., Z. D. Deng, J. P. Duncan, D. Zhou, T. J. Carlson, G. E. Johnson & H. Hou, 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renewable Energy 99: 1244–1252.
Fullerton, A. H., K. M. Burnett, E. A. Steel, R. L. Flitcroft, G. R. Pess, B. E. Feist, et al., 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater biology 55: 2215–2237.
Haraldstad, T., T. Forseth & E. Höglund, 2018. Common mechanisms for guidance efficiency of descending Atlantic salmon smolts in small and large hydroelectric power plants. River Research and Applications 34: 1179–1185.
Haro, A., M. Odeh, J. Noreika & T. Castro-Santos, 1998. Effect of water acceleration on downstream migratory behavior and passage of atlantic salmon smolts and juvenile american shad at surface bypasses. Transactions of the American Fisheries Society 127: 118–127.
Havn, T. B., S. A. Sæther, E. B. Thorstad, M. A. K. Teichert, L. Heermann, O. H. Diserud, et al., 2017. Downstream migration of Atlantic salmon smolts past a low head hydropower station equippped with Archimedes screw and Francis turbines. Ecological Engineering 105: 262–275.
Havn, T. B., E. B. Thorstad, M. A. K. Teichert, S. A. Sæther, L. Heermann, R. D. Hedger, et al., 2018. Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine. Hydrobiologia 805: 273–290.
Holbrook, C. M., M. T. Kinnison & J. Zydlewski, 2011. Survival of migrating Atlantic salmon smolts through the Penobscot River, Maine: a prerestoration assessment. Transactions of the American Fisheries Society 140: 1255–1268.
Huet, M., 1949. Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Aquatic Sciences-Research Across Boundaries 11: 332–351.
Karppinen, P., P. Jounela, R. Huusko & J. Erkinaro, 2014. Effects of release timing on migration behaviour and survival of hatchery-reared Atlantic salmon smolts in a regulated river. Ecology of Freshwater Fish 23: 438–452.
Katopodis, C. & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering 48: 8–18.
Klopries, E. M., Z. D. Deng, T. U. Lachmann, H. Schüttrumpf & B. A. Trumbo, 2018. Surface bypass as a means of protecting downstream- migrating fish: lack of standardised evaluation criteria complicates evaluation of efficacy. Marine and Freshwater Research 69: 1882–1893.
Koed, A., N. Jepsen, K. Aarestrup & C. Nielsen, 2002. Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station. Hydrobiologia 483: 31–37.
Larinier, M., 2001. Environmental issues, dams and fish migration. In Marmulla, G. (ed), FAO fisheries technical paper: Vol. 419 Dams, Fish and Fisheries: Opportunities, challenges and conflict resolution: 45–89.
Larinier, M., 2008. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609: 97–108.
Larinier, M. & D. Couret, 2008. Guide pour la conception de prises d’eau « ichtyocompatibles » pour les petites centrales hydroélectriques. Rapport GHAAPPE RA08, 4
Larinier, M. & F. Travade, 1998. Petits aménagements hydroélectriques et libre circulation des poissons migrateurs. La Houille Blanche: 46–51.
Larinier, M. & F. Travade, 2002. Downstream migration: problems and facilities. Bulletin Français de la Pêche et de la Pisciculture: 181–207.
Lashofer, A., W. Hawle, I. Kampel, F. Kaltenberger & B. Pelikan, 2012. State of technology and design guidelines for the Archimedes Screw turbine. Conference: Hydro 2012—Innovative Approaches to Global Challenge At: Bilbao, SPAINVolume: The international Journal on Hydropower & Dams, Hydro 2012—Proceedings—Full papers.
Marschall, E. A., M. E. Mather, D. L. Parrish, G. W. Allison & J. R. McMenemy, 2011. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success of migrating salmon smolts. Ecological Applications 21: 3014–3031.
McCormick, S. D., L. P. Hansen, T. P. Quinn & R. L. Saunders, 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55: 77–92.
Monnerjahn, U., 2011. Atlantic Salmon (Salmo salar L.) re-introduction in Germany: a status report on national programmes and activities. Journal of Applied Ichthyology 27: 33–40.
Moore, A., L. Privitera, M. J. Ives, J. Uzyczak & W. R. Beaumont, 2018. The effects of a small hydropower scheme on the migratory behaviour of Atlantic salmon (Salmo salar) smolts. Journal of fish biology 93: 469–476.
Newton, M., J. Barry, J. A. Dodd, M. C. Lucas, P. Boylan & C. E. Adams, 2018. A test of the cumulative effect of river weirs on downstream migration success, speed and mortality of Atlantic salmon (Salmo salar) smolts: an empirical study. Ecology of Freshwater Fish. 10.1111/eff.12441.
Nyqvist, D., L. A. Greenberg, E. Goerig, O. Calles, E. Bergman, W. R. Ardren & T. Castro-Santos, 2016. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecology of Freshwater Fish 26: 707–718.
Ovidio, M. & J. C. Philippart, 2002. The impact of small physical obstacles on upstream movements of six species of fish: synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia 483: 55–69.
Ovidio, M., E. Baras, D. Goffaux, C. Birtles & J. C. Philippart, 1998. Environmental unpredictability rules the autumn migration of brown trout (Salmo trutta L.) in the Belgian Ardennes. Hydrobiologia 371(372): 263–274.
Ovidio, M., A. Dierckx, S. Bunel, L. Grandry, C. Spronck & J. P. Benitez, 2017a. Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system. River Research and Applications 33: 27–36.
Ovidio, M., D. Sonny, A. Dierckx, Q. Watthez, S. Bourguignon, B. de le Court, O. Detrait & J. P. Benitez, 2017b. The use of behavioural metrics to evaluate fishway efficiency. River Research and Applications 33: 1484–1493.
Parrish, D. L., R. J. Behnke, S. R. Gephard, S. D. Mc Cormick & G. H. Reeves, 1998. Why aren’t there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences 55: 281–287.
Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of neotropical migratory fish. Fish and Fisheries 16: 697–715.
Philippart, J., J. Micha, E. Baras, C. Prignon, A. Gillet & S. Joris, 1994. The Belgian project “meuse salmon 2000”. First results, problems and future prospects. Water Science and Technology 29: 315–317.
Piper, A. T., P. J. Rosewarne, R. M. Wright & P. S. Kemp, 2018. The impact of an Archimedes screw hydropower turbine on fish migration in a lowland river. Ecological Engineering 118: 31–42.
Riley, W. D., M. O. Eagle & S. J. Ives, 2002. The onset of downstream movement of juvenile Atlantic salmon (Salmo salar L.) in a chalk stream. Fisheries Management and Ecology 9: 87–94.
Scruton, D. A., R. S. McKinley, N. Kouwen, W. Eddy & R. K. Booth, 2003. Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Research and Applications 19: 605–617.
Scruton, D. A., C. J. Pennell, C. E. Bourgeois, R. F. Goosney, T. R. Porter & K. D. Clarke, 2007. Assessment of a retrofitted downstream fish bypass system for wild Atlantic salmon (Salmo salar) smolts and kelts at a hydroelectric facility on the Exploits River, Newfoundland, Canada. Hydrobiologia 582: 155–169.
Serrano, I., P. Rivinoja, L. Karlsson & S. Larsson, 2009. Riverine and early marine survival of stocked salmon smolts (Salmo salar L.) descending the Testebo River. Sweden. Fisheries Management and Ecology 16: 386–394.
Silva, A. T., M. C. Lucas, T. Castro-Santos, C. Katopodis, L. J. Baumgartner, J. D. Thiem, et al., 2018. The future of fish passage science, engineering, and practice. Fish and Fisheries 19: 340–362.
Stich, D. S., M. T. Kinnisson, J. F. Kocik & J. D. Zydlewski, 2015. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water. Canadian Journal of Fisheries and Aquatic Sciences 72(9): 1339–1351.
Svendsen, J. C., K. Aarestrup, H. Malte, U. H. Thygesen, H. Baktoft, A. Koed, et al., 2011. Linking individual behaviour and migration success in Salmo salar smolts approaching a water withdrawal site: implications for management. Aquatic Living Resources 24: 201–209.
Tétard, S., A. Maire, M. Lemaire, E. De Oliveira, P. Martin & C. Dominique, 2019. Behaviour of Atlantic salmon smolts approaching a bypass under light and dark conditions: importance of fish development. Ecological Engineering 131: 39–52.
Thorstad, E., B. Finstad, R. Sivertsgrd, P. Bjorn & R. McKinleyd, 2004. Migration speeds and orientation of Atlantic salmon and sea trout post-smolts in a Norwegian fjord system. Environmental Biology of Fishes 71: 305–311.
Thorstad, E. B., F. Whoriskey, I. Uglem, A. Moore, A. H. Rikardsen & B. Finstad, 2012. A critical life stage of the Atlantic salmon (Salmo salar): behaviour and survival during the smolt and initial post-smolt migration. Journal of Fish Biology 81: 500–542.
Thorstad, E. B., T. B. Havn, S. A. Sæther, L. Heermann, M. A. K. Teichert, O. H. Diserud, et al., 2017. Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fisheries Management and Ecology 24: 199–207.
Tomanova, S., D. Courret & A. Alric, 2017. Protecting fish from entering turbines: the efficiency of a low-sloping rack for downstream migration of Atlantic salmon smolts. Houille Blanche. 10.1051/lhb/2017002.
Tomanova, S., D. Courret, A. Alric, E. Oliveira, T. Lagarrigue & S. Tétard, 2018. Protecting efficiently sea-migrating salmon smolts from entering hydropower plant turbines with inclined or oriented low bar spacing racks. Ecological Engineering 122: 143–152.
Wilkes, M. A., J. A. Webb, P. S. Pompeu, L. G. M. Silva, A. S. Vowles, C. F. Baker, P. Franklin, O. Link & P. S. Kemp, 2018a. Not just a migration problem: metapopulations, habitat shifts, and gene flow are also important for fishway science and management. River Research and Application. 10.1002/rra.3320.
Wilkes, M. A., L. Baumgartner, C. Boys, L. G. M. Silva, J. O’Connor, M. Jones, I. Stuart, E. Habit, O. Link & J. A. Webb, 2018b. Fish-Net: probabilistic models for fishway planning, design and monitoring to support environmentally sustainable hydropower. Fish and Fisheries 19: 677–697.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.