Almeev, R.R., Bolte, T., Nash, B.P., Holtz, F., Erdmann, M., Cathey, H.E., High-temperature, low-H2O silicic magmas of the Yellowstone hotspot: an experimental study of rhyolite from the Bruneau-Jarbidge Eruptive Center, Central Snake River Plain, USA. J. Petrol. 53 (2012), 1837–1866.
Baker, D.R., Vaillancourt, J., The low viscosities of F+H2O-bearing granitic melts and implications for melt extraction and transport. Earth Planet. Sci. Lett. 132 (1995), 199–211.
Barnes, S.J., Maier, W.D., Platinum-group elements and microstructures of normal Merensky Reef from Impala platinum mines, Bushveld Complex. J. Petrol. 43 (2002), 103–128.
Bartels, A., Behrens, H., Holtz, F., Schmidt, B.C., Fechtelkord, M., Knipping, J., Crede, L., Baasner, A., Pukallus, N., The effect of fluorine boron and phosphorus on the viscosity of pegmatitic liquids. Chem. Geol. 346 (2013), 184–198.
Barton, M.D., Johnson, D.A., Evaporitic-source model for igneous-related Fe oxide–(REE-Cu-Au-U) mineralization. Geology 24 (1996), 259–262.
Barton, M.D., Johnson, D.A., Footprints of Fe-oxide (–Cu–Au) systems, 33, 2004, University of Western Australia Special Publication, 112–116.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W., Koepke, J., A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. Am. Mineral. 87 (2002), 1717–1726.
Berndt, J., Koepke, J., Holtz, F., An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J. Petrol. 46 (2005), 135–167.
Bilenker, L., Simon, A.C., Reich, M., Lundstrom, C., Bindeman, I., Munizaga, R., Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim. Cosmochim. Acta 177 (2016), 94–104.
Bogaerts, M., Schmidt, M.W., Experiments on silicate melt immiscibility in the system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas. Contrib. Mineral. Petrol. 152 (2006), 257–274.
Borrok, D.M., Kelser, S.E., Boer, R.H., Essene, E.J., The Vergenoeg magnetite-fluorite deposit, South Africa; support for a hydrothermal model for massive iron oxide deposits. Econ. Geol. 93 (1998), 564–586.
Botcharnikov, R.E., Koepke, J., Holtz, F., McCammon, C., Wilke, M., The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim. Cosmochim. Acta 69 (2005), 5071–5085.
Botcharnikov, R.E., Almeev, R.R., Koepke, J., Holtz, F., Phase relations and liquid lines of descent in hydrous ferrobasalt—implications for the Skaergaard intrusion and Columbia River flood basalts. J. Petrol. 49 (2008), 1687–1727.
Buchanan, P.C., Koeberl, C., Reimold, W.U., Petrogenesis of the Dullstroom formation, Bushveld magmatic province, South Africa. Contrib. Mineral. Petrol. 137 (1999), 133–146.
Buchanan, P., Reimold, W., Koeberl, C., Kruger, F., Geochemistry of intermediate to siliceous volcanic rocks of the Rooiberg Group, Bushveld magmatic province, South Africa. Contrib. Mineral. Petrol. 144 (2002), 131–143.
Buchanan, P.C., Reimold, W.U., Koeberl, C., Kruger, F.J., Rb–Sr and Sm–Nd isotopic compositions of the Rooiberg Group, South Africa: early Bushveld-related volcanism. Lithos 75 (2004), 373–388.
Buddington, A.F., Lindsley, D.H., Iron–titanium oxide minerals and synthetic equivalents. J. Petrol. 5 (1964), 310–357.
Burnham, C.W., Development of the Burnham model for prediction of H2O solubility in magmas. Miner. Soc. Am. Rev. Mineral. 30 (1994), 123–129.
Charlier, B., Grove, T.L., Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol. 164 (2012), 27–44.
Chen, H., Clark, A.H., Kyser, T.K., The Marcona magnetite deposit, Ica, South-Central Peru: a product of hydrous, iron oxide-rich melts?. Econ. Geol. 105 (2010), 1441–1456.
Childress, T.M., Simon, A.C., Day, W.C., Lundstrom, C.C., Bindeman, I.N., Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA. Econ. Geol. 111 (2016), 2033–2044.
Crocker, I.T., Volcanogenic fluorite-hematite deposits and associated pyroclastic rock suite at Vergenoeg, Bushveld Complex. Econ. Geol. 80 (1985), 1181–1200.
Crocker, I.T., Eales, H.V., Ehlers, D.I., Fluorite, Cassiterite and Sulphide Deposits Associated with the Acid Rocks of the Bushveld Complex. 2001, Memoir of the Council for Geosciences, South Africa, 151.
Dare, S.A., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E., Potvin-Doucet, C., Trace elements in magnetite as petrogenetic indicators. Miner. Deposita 49 (2014), 785–796.
Dare, S.A., Barnes, S.J., Beaudoin, G., Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner. Deposita 50 (2014), 607–617.
Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., Rutherford, M.J., Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 80 (1995), 319–328.
Dill, H., The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Sci. Rev. 100 (2010), 1–420.
Dingwell, D.B., The structure and properties of fluorine-rich silicate melts: implications for granite petrogenesis. Granite-Related Mineral Deposits: Geology, Petrogenesis and Tectonic Setting, 1985, Canadian Institute of Mining, Metallurgy and Petroleum, Halifax, NS, 72–81.
Dixon, S., Rutherford, M.J., Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth Planet. Sci. Lett. 45 (1979), 45–60.
Eriksson, P.G., Hattingh, P.J., Altermann, W., An overview of the Transvaal sequence and Bushveld Complex, South Africa. Miner. Deposita 30 (1995), 98–111.
Filiberto, J., Wood, J., Dasgupta, R., Shimizu, N., Le, L., Treiman, A.H., Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt. Chem. Geol. 312–313 (2012), 118–126.
Fourie, P.J., The Vergenoeg fayalite iron oxide fluorite deposit, South Africa: some new aspects. Porter, T.M., (eds.) Hydrothermal Iron Oxide Copper–Gold and Related Deposits a Global Perspective, 2000, Australian Mineral Foundation, Adelaide, 309–320.
Frietsch, R., On the magmatic origin of iron ores of the Kiruna type. Econ. Geol. 73 (1978), 478–485.
Giordano, D., Romano, C., Dingwell, D.B., Poe, B., Behrens, H., The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim. Cosmochim. Acta 68 (2004), 5159–5168.
Gleason, J.D., Marikos, M.A., Barton, M.D., Johnson, D.A., Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems. Geochim. Cosmochim. Acta 64 (2000), 1059–1068.
Goff, B.H., Weinberg, R., Groves, D.I., Vielreicher, N.M., Fourie, P.J., The giant Vergenoeg fluorite deposit in a magnetite–fluorite–fayalite REE pipe: a hydrothermally-altered carbonatite-related pegmatoid?. Mineral. Petrol. 80 (2004), 173–199.
Graupner, T., Mühlbach, C., Schwarz-Schampera, U., Henjes-Kunst, F., Melcher, F., Terblanche, H., Mineralogy of high-field-strength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa. Ore Geol. Rev. 64 (2015), 583–601.
Harlov, D.E., Meighan, C.J., Kerr, I.D., Samson, I.M., Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA. Econ. Geol. 111 (2016), 1963–1984.
Hatton, C.J., Schweitzer, J.K., Evidence for synchronous extrusive and intrusive Bushveld magmatism. J. Afr. Earth Sci. 21 (1995), 579–594.
Haynes, D.W., Iron oxide copper (-gold) deposits: their position in the ore deposit spectrum and modes of origin. Porter, T.M., (eds.) Hydrothermal Iron Oxide Copper-Gold & related deposits. A global perspective, 2000, 71–90.
Haynes, D.W., Cross, K.C., Bills, R.T., Reed, M.H., Olympic Dam ore genesis; a fluid-mixing model. Econ. Geol. 90 (1995), 281–307.
Henríquez, F., Naslund, H.R., Nyström, J.O., Vivallo, W., Aguirre, R., Dobbs, F.M., Lledó, H., New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile—a discussion. Econ. Geol. 98 (2003), 1497–1500.
Hildebrand, R.S., Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Econ. Geol. 81 (1986), 640–659.
Hitzman, M.W., Iron oxide–Cu–Au deposits: what, where, when, and why. Porter, T.M., (eds.) Hydrothermal Iron Oxide Copper–gold & Related Deposits: A Global Perspective, vol. 2, 2000, PGC Publishing, Adelaide, Australia, 9–25.
Hitzman, M.W., Oreskes, N., Einaudi, M.T., Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precam. Res. 58 (1992), 241–287.
Jonsson, E., Troll, V.R., Högdahl, K., Harris, C., Weis, F., Nilsson, K.P., Skelton, A., Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci. Rep., 3, 2013.
Jonsson, E., Harlov, D.E., Majka, J., Högdahl, K., Persson-Nilsson, K., Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden. Am. Mineral. 101:8 (2016), 1769–1782.
Kinnaird, J.A., Kruger, F.J., Cawthorn, R.G., Rb–Sr and Nd–Sm isotopes in fluorite related to the granites of the Bushveld Complex. S. Afr. J. Geol. 107 (2004), 413–430.
Kleemann, G.J., Twist, D., The compositionally-zoned sheet-like granite pluton of the Bushveld Complex: evidence bearing on the nature of A-type magmatism. J. Petrol. 30 (1989), 1383–1414.
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wӓlle, M., Heinrich, C.A., Holtz, F., Munizaga, R., Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim. Cosmochim. Acta 171 (2015), 15–38.
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Lundstrom, C., Bindeman, I., Munizaga, R., Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43 (2015), 591–594.
Lester, G.W., Clark, A.H., Kyser, T.K., Naslund, H.R., Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas. Contrib. Miner. Petrol. 166 (2013), 329–349.
Lledo, H.L., Jenkins, D.M., Experimental investigation of the upper thermal stability of Mg-rich actinolite; implications for Kiruna-type iron deposits. J. Petrol. 49 (2008), 225–238.
Manning, D.A.C., The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Miner. Petrol. 76 (1981), 206–215.
Mathez, E.A., VanTongeren, J.A., Schweitzer, J., On the relationships between the Bushveld Complex and its felsic roof rocks, part 1: petrogenesis of Rooiberg and related felsites. Contrib. Miner. Petrol. 166 (2013), 435–449.
Naslund, H.R., The effects of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. Am. J. Sci. 283 (1983), 1034–1059.
Naslund H. R., Henríquez F., Nyström J. O., Vivallo W. and Dobbs F. M. (2002) Magmatic iron ores and associated mineralization: Examples from the Chilean High Andes and Coastal Cordillera. In Hydrothermal iron oxide copper-gold and related deposits: A global perspective, vol. 2, pp. 207–226.
Nystrom, J.O., Henriquez, F., Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Econ. Geol. 89 (1994), 820–839.
Nyström, J.O., Billström, K., Henríquez, F., Fallick, A.E., Naslund, H.R., Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF 130 (2008), 177–188.
Parak, T., Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. Econ. Geol. 70 (1975), 1242–1258.
Philpotts, A.R., Doyle, C.D., Effect of magma oxidation state on the extent of silicate liquid immiscibility in a tholeiitic basalt. Am. J. Sci. 283 (1983), 967–986.
Rhodes A. L. and Oreskes N. (1995) Magnetite deposition at El Laco, Chile: implications for Fe-oxide formation in magmatic-hydrothermal systems. Giant ore deposits-II. Controls on the scale of orogenic magmatic-hydrothermal mineralization, pp. 582–622.
Rhodes, A.L., Oreskes, N., Oxygen isotope composition of magnetite deposits at El Laco, Chile: Evidence of formation from isotopically heavy fluids. Geology and Ore Deposits of the Central Andes, Brian J. Skinner, ed. Geol. Soc. Spec. Publ. 7 (1999), 333–351.
Ryerson, F.J., Hess, P.C., Implications of liquid–liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta 42 (1978), 921–932.
Schweitzer, J.K., Hatton, C.J., Chemical alteration within the volcanic roof rocks of the Bushveld Complex. Econo. Geol. 90 (1995), 2218–2231.
Schweitzer, J.K., Hatton, C.J., De Waal, S.A., Economic potential of the Rooiberg Group: volcanic rocks in the floor and roof of the Bushveld Complex. Miner. Deposita 30 (1995), 168–177.
Sillitoe, R.H., Burrows, D.R., New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ. Geol. 97 (2002), 1101–1109.
Toplis, M.J., Carroll, M.R., An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral—melt equilibria in ferro-basaltic systems. J. Petrol. 36 (1995), 1137–1170.
Tornos, F., Velasco, F., Hanchar, J.M., Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile. Geology 44 (2016), 427–430.
Travisany, V., Henriquez, F., Nystrom, J.O., Magnetite lava flows in the Pleito-Melon district of the Chilean iron belt. Econ. Geol. 99 (1995), 438–444.
Twist, D., French, B.M., Voluminous acid volcanism in the Busheveld Complex: A review of the Rooiberg Felsite. Bull. Volcanol. 46 (1983), 225–242.
Velasco, F., Tornos, F., Hanchar, J.M., Immiscible iron-and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): Evidence for a magmatic origin for the magnetite deposits. Ore Geol. Rev. 79 (2016), 346–366.
Visser, W., Koster van Groos, A.F., Effect of P2O5 and TiO2 on liquid–liquid equilibria in the system K2O-FeO-Al2O3-SiO2. Am. J. Sci. 279 (1979), 970–988.
Watson, E.B., Two-liquid partition coefficients: experimental data and geochemical implications. Contrib. Mineral. Petrol. 56 (1976), 119–134.
Williams, P.J., Barton, M.D., Johnson, D.A., Fontboté, L., De Haller, A., Mark, G., Oliver, N.H.S., Marschik, R., Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Econ. Geol., 2005, 371–405 (100th Anniversary).
Zhang, C., Koepke, J., Wang, L., Wolff, P.E., Wilke, S., Stechern, A., Almeev, R., Holtz, F., A practical method for accurate measurement of trace level fluorine in Mg- and Fe-bearing mineral and glass using electron probe microanalysis. Geostand. Geoanal. Res., 2016, 10.1111/j.1751-908X.2015.00390.x.