Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron–fluorine deposit, South Africa

Tong Hou a,b,⇑, Bernard Charlier a,c, Olivier Namur a,c, Philip Schütte d, Ulrich Schwarz-Schampera d, Zhaochong Zhang b, Francois Holtz a

a Leibniz University Hannover, Institute of Mineralogy, Hannover 30167, Germany
b State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Beijing 100083, China
c Department of Geology, University of Liege, 4000 Sart Tilman, Belgium
d Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, Hannover 30655, Germany

Received 26 August 2016; accepted in revised form 10 January 2017; Available online 23 January 2017

Abstract

In this study we experimentally assess whether the bulk composition of the Kiruna-type iron–fluorine Vergenoeg deposit, South Africa (17 wt.% SiO₂ and 55 wt.% FeO tot) could correspond to an immiscible Fe-rich melt paired with its host rhyolite. Synthetic powder of the host rhyolite was mixed with mafic end-members (ore rocks) in variable proportions. Experimental conditions were 1–2 kbar and 1010 °C, with a range of H₂O and F contents in the starting compositions. Pairs of distinct immiscible liquids occur in experiments saturated with fluorite, under relatively dry conditions, and at oxygen fugacity conditions corresponding to FMQ/–1.4 to FMQ+/1.8 (FMQ = fayalite-magnetite-quartz solid buffer). The Si-rich immiscible liquids contain 60.9–73.0 wt.% SiO₂, 9.1–12.5 wt.% FeO tot, 2.4–4.2 wt.% F, and are enriched in Na₂O, K₂O and Al₂O₃. The paired Fe-rich immiscible melts have 41.0–49.5 wt.% SiO₂, 20.6–36.1 wt.% FeO tot and 4.5–6.0 wt.% F, and are enriched in MgO, CaO and TiO₂. Immiscibility does not develop in experiments performed under water-rich (aH₂O > 0.2; a = activity) and/or oxidized (>FMQ+/1.8) conditions. In all experiments, solid phases are magnetite, ±fayalite, fluorite and tridymite. Our results indicate that the rocks from the Vergenoeg pipe crystallized in a magma chamber hosting two immiscible silicate melts. Crystallization of the pipe from the Fe-rich melt explains its extreme enrichment in Ca, F and Fe compared to the host rhyolitic rocks. However, its low bulk silica content compared to experimental Fe-rich melts indicates that the pipe formed by remobilization of a mafic crystal mush dominated by magnetite and fayalite. Segregation of evolved residual liquids as well as the conjugate immiscible Si-rich melt produced the host rhyolite. The huge amount of fluorine in Vergenoeg ores (~12 wt.% F) can hardly be explained by simple crystallization of fluorite from the Fe-rich silicate melt (up to 6 wt.% F at fluorite saturation). Instead, we confirm a previous hypothesis that the fluorite enrichment is, in part, due to the migration of hydrothermal fluids.

© 2017 Elsevier Ltd. All rights reserved.

Keywords: Vergenoeg; Liquid immiscibility; Kiruna-type; Silicate melt; Iron-fluorine deposit

1. INTRODUCTION

Kiruna-type iron oxide (±apatite) deposits occur in a number of locations across the world. They range in age from Proterozoic to Holocene, and are associated with volcanic rocks or sub-volcanic intrusions (Frietsch, 1978; Hitzman et al., 1992; Nystrom and Henriquez, 1994; Dill, http://dx.doi.org/10.1016/j.gca.2017.01.025
0016-7037/© 2017 Elsevier Ltd. All rights reserved.
Controversy persists regarding the genesis of these enigmatic deposits that are dominated by sulfide-poor mineral assemblages (magnetite/hematite, ± fluorapatite, ± fayalite, ± fluorite) and range in size from large bodies (thousands of meters in scale) containing billions of tons of iron ore, to small veins and veinlets (Hildebrand, 1986; Williams et al., 2005). The Kiruna-type deposits have been interpreted to have an exhalative-synsedimentary origin (Parak, 1975), or to have formed by epigenetic-hydrothermal processes (Gleason et al., 2000; Dare et al., 2014a). ‘Kiruna-type’ deposits are often considered as an end-member of the hydrothermal Iron Oxide–Copper–Gold (IOCG) group (Parak, 1975; Crocker, 1985). Processes typically proposed include formation and stagnation of a volatile-bearing Fe-rich immiscible melt (e.g. Naslund et al., 2002; Chen et al., 2010; Tornsø et al., 2016; Velasco et al., 2016) followed by fractional crystallization, and formation of magnetite-rich cumulate rocks (Knipping et al., 2015a). The extent to which hydrothermal fluids played a role in remobilizing iron in Kiruna deposits is however more debated. Accurate constraints on this issue are complicated by the comparatively small effect of post-mineralization metasomatism on the Fe isotope signature compared to its effect on the O isotope signature (Childress et al., 2016). However, it is known that metasomatism strongly affects critical elements, promotes the exsolution of REE-phosphates withinapatite grains and can alter the F/Cl ratio ofapatite (Harlov et al., 2016; Jonsson et al., 2015a). Fluids may also affect the redistribution of some elements such as F, S and P (e.g. Harlov et al., 2002; Knipping et al., 2015a,b).

The Vergenoeg deposit (~1.95 Ga; Crocker, 1985) in South Africa is a Kiruna-type massive iron oxide deposit (Borrok et al., 1998), characterized by a high content of fluorite. It is currently mined and accounts for 3.4% of the total world production of fluorine (Graupner et al., 2015) with a fluorite resource in excess of 174 million tons at 28.1 wt.% CaF₂ (Fourie, 2000). Three contrasting genetic models have been proposed for Vergenoeg: (1) the separation of an immiscible Fe-rich liquid, i.e. Fe-rich mafic melt from the conjugate granitic (ryholitic) magma (Crocker, 1985); (2) combined magmatic and hydrothermal activity leading to the extensive alteration of the primary fayalite-fluorite-ilmenite assemblage (Borrok et al., 1998; Fourie, 2000), and (3) the development of a fluorine-rich end-member of the iron oxide copper–gold (IOCG) group associated with carbonatites, in particular the Phalaborwa carbonatite of similar age (ca. 2.05 Ga; Goff et al., 2004). The origin of the Vergenoeg deposit is therefore highly controversial, as is the origin of the large amounts of fluorite observed in the deposit. Rb–Sr and Sm–Nd isotopic ratios of fluorite crystals indicate that a significant proportion of these crystals formed from magmas (Kinnaird et al., 2004; Graupner et al., 2015) but fluid inclusion analyses also suggest that some fluorite crystals formed from hydrothermal fluids (Borrok et al., 1998).

With this study, we aim to better understand the magmatic stages in the formation of the Vergenoeg deposit, and specifically test the hypothesis that silicate liquid immiscibility formed a ryholitic melt and a conjugate iron-rich silicate melt. We experimentally assess whether the bulk composition of the ore body and the host ryholite could represent a pair of immiscible melts in equilibrium. We investigate the role of volatiles (fluorine and H₂O) in the development of immiscibility and saturation of fluorite in immiscible melts. Based on our new experimental data, we propose that the Vergenoeg pipe represents the cumulates from an immiscible Fe-rich melt which was saturated in fluorite. We also confirm that hydrothermal fluids contributed to the high fluorine content of the Vergenoeg deposit.

2. GEOLOGY OF THE VERGENOEG DEPOSIT

The Vergenoeg deposit is situated in the center of the Bushveld Complex in South Africa. The Bushveld Complex intruded sedimentary and volcanic rocks of the Transvaal Sequence (Eriksson et al., 1995), within the Kaapvaal Craton. These host rocks belong to the Rooiberg Group ryholite (Hatton and Schweitzer, 1995; Buchanan et al., 2004). The Rooiberg Group is divided into four formations comprising the lower Dullstroom and Damwal Formations and the upper Kwaggasnek and Schrikkleof Formations (Schweitzer et al., 1995; Mathiez et al., 2013) with a total thickness of 3–5 km (Twist and French, 1983; Schweitzer et al., 1995). The Dullstroom Formation (61–78 wt.% SiO₂) includes interbedded basaltic, andesitic, dacitic and rhyolitic flows and becomes richer in silica with increasing stratigraphic height. The Damwal Formation is dominated by dacite to low-silica rhyolite (~68 wt.% SiO₂) while the Kwaggasnek (~72 wt.% SiO₂) and Schrikkleof (~74 wt.% SiO₂) Formations are rhyolites (Schweitzer and Hatton, 1995; Schweitzer et al., 1995; Buchanan et al., 1999; 2002). The Vergenoeg deposit consists of a vertical, discordant, igneous pipe emplaced in rhyolites and pyroclastic rocks (Schweitzer et al., 1995; Fig. 1). The pyroclastic succession is commonly referred to as the Vergenoeg Pyroclastic Rock Suite (Crocker, 1985).

2.1. The Vergenoeg pipe

The Vergenoeg pipe has an oval shape at the surface with a north–south extension of 900 m and an east–west diameter of ~600 m (Fig. 1; Goff et al., 2004). The shape of the pipe below the surface has been investigated using geophysical methods (gravity surveys) as well as drill core mapping. The body of the pipe appears to have a funnel
shape (depth >650 m; Crocker, 1985). Similar pipe-like morphologies have been described for several other Kiruna-type and related deposits (e.g. the Pea Ridge deposit in USA; Harlov et al., 2016).

The Vergenoeg pipe consists of three gradational hypogene units of magnetite-fluorite, magnetite-fayalite and fayalite. The contacts between the pipe and the surrounding rocks are highly variable in terms of mineralogy. Some zones have sharp contacts with little alteration of the felsic wall rocks, whereas other areas have strongly altered wall rocks with Fe-rich sericite and epidote locally observed (Goff et al., 2004). Both massive and disseminated fluorites occur throughout the pipe, with decreasing abundance towards greater depths.

Fig. 1. (a) Simplified geological map of the Bushveld Complex (modified after Barnes and Maier, 2002); Geological overview (b) and a cross-section (c) of the Vergenoeg deposit (modified after Goff et al., 2004), showing the distribution of the lithological units and the position of the drill cores. The samples used in this study are from the open pit and the drill core KI24. See Appendix for details.
The upper part of the pipe is made up of gossan (ca. 50 m thick). It was formed by weathering of magnetite-fluorite rocks through oxidation and hydration of magnetite, iron sulfides and siderite into hematite and goethite (Borrok et al., 1998). Within the gossan, three types of ore can be distinguished: (1) high-grade, massive, specularitic hematite ore (60 wt.% Fe₂O₃); (2) mixed fluorite-hematite/goethite ore forming the bulk of the gossan; and (3) high-grade fluorite ore (60 wt.% CaF₂; Crocker, 1985) in veins and brecciated plugs rich in fluorite, with associated siderite and magnetite (Fig. 2). The presence of preserved fluorite veins of metspar provides clear evidence for alteration of the host rock to gossan. They are usually vertical and locally merge to form plugs of fluorite-rich rock with veins of siderite and magnetite (Crocker, 1985).

The magnetite-fluorite unit (~100 m thick) is the main fluorite ore resource at Vergenoeg (Goff et al., 2004). The fluorite content decreases from 32 vol.% at the top to 20 vol.% at the bottom (Fourie, 2000). Coarse-grained fluorite and magnetite crystals are set in a groundmass of magnetite, fluorite and siderite with accessory REE minerals (Goff et al., 2004). At a depth of about 150 m, there is a gradational change into the magnetite-fayalite unit that represents a transition zone between the magnetite-fluorite unit and the deeper fayalite unit. Rocks of the magnetite-fayalite unit are composed of fayalite, magnetite and interstitial fluorite. The lowermost fayalite unit of the Vergenoeg pipe is almost exclusively made up of unaltered, coarse-grained, prismatic fayalite (>90 vol.%) with rare fluorite and apatite.

2.2. The Vergenoeg Pyroclastic Rock Suite (VPS)

Pyroclastic rocks associated with the Vergenoeg pipe discordantly overlie the uppermost flow-banded Rooiberg Group rhyolites, i.e. Schrikkloof Formation (Crocker...
et al., 2001). Two units are distinguished within the pyroclastic rocks. The basement is formed by siliceous rocks and welded agglomerate, laterally grading into a fine-grained tuff with increasing distance from the pipe (Crocker, 1985). The thickness of this unit reaches 60 m, a local maximum. It is commonly referred to as the basal felsite (Borrok et al., 1998) but can be genetically referred to as an ignimbrite (Fig. 1; Fourie, 2000). Borrok et al. (1998) suggested that the basal felsites might also represent a certain facies of the Rooiberg Group rhyolites (Mathez et al., 2013). The basal felsites are overlain by a 40 m thick volcanic breccia (Fig. 1), consisting of partly rounded felsic clasts in a fine-grained ferruginous-felsic matrix, interlayered with a hematite tuff (Fourie, 2000). The upper part of the succession is formed by 10 m of sedimentary rocks consisting of pyroclastic detritus and alternating layers of hematite and felsite (Crocker, 1985; Fourie, 2000).

3. EXPERIMENTAL AND ANALYTICAL PROCEDURES

3.1. Initial hypothesis and methodology

The formation of the Vergenoeg deposit was previously attributed to a silicate-liquid immiscibility process by Crocker (1985). In this model, the basal felsites of the VPS constitute the extrusive equivalent of an immiscible Si-rich end-member whereas the Vergenoeg pipe is the conjugate Fe-rich end-member. The corollary of this hypothesis is that the weighted sum of the silicic host rocks and the iron ore body, possibly in combination with variable amounts of volatiles (H₂O, S, F and Cl), represents the composition of the original parent ore-bearing magma prior to immiscibility. To test the hypothesis of immiscibility we do not require the exact relative proportions of the two end-members as the compositions of immiscible pairs define a locus between which immiscibility develops. Any composition that plots on the mixing trend between the equilibrium immiscible pairs would unmix, with the proportions of the two conjugate liquids determined by the lever rule.

As stated above, the Vergenoeg pipe shows significant mineralogical and geochemical variations with depth and is also laterally heterogeneous (Fig. 1). In order to obtain a representative (average) bulk composition of the pipe, it is necessary to use a mixture of sample compositions from various units of the pipe. We sampled fresh fluorite ore, magnetite-fayalite and magnetite-fluorite rocks from K1 24 drill core, and gossan rocks in the open pit (Fig. 1 and see details in Supplementary Table 1). After screening under the microscope, fresh samples were selected, sawed into slabs, and the central parts were used for whole-rock analyses. Specimens were crushed in a steel mortar and ground to powder in a steel mill. Loss on ignition was determined gravimetrically after heating the samples at 1030 °C for 15 min. Major element analyses (Supplementary Table 1) were performed on fused glass discs using a scanning wavelength dispersion X-ray fluorescence (XRF) spectrometer at BGR in Hannover. In-house standards and 130 certified reference materials were used for calibration and assessment of accuracy. The analytical uncertainties are typically less than 1% as estimated by repeated analyses of international standards, which were not used in the development of the calibration curves for the XRF.

Magnetite-fayalite and fayalite units constitute the dominant facies of the Vergenoeg pipe (Fig. 1); fluorite contents are variable but, on average, relatively high (Fig. 2). Average F content is 6.70 wt.% in the magnetite-fayalite unit and 0.9 wt.% in the fayalite unit. Based on volume consideration of the deposit, we assume that the Vergenoeg pipe consists of 40% magnetite-fayalite unit, 40% fayalite unit and 20% fluorite ores. Based on these values, we prepared mafic end-members for the experiments using two approaches (Fig. 2): (1) we mixed the natural samples SA15 (magnetite-fayalite unit), SA31 (fayalite unit) and SA25 (massive fluorite) in a ratio of 0.4:0.4:0.2 (composition M0; Table 1); (2) we prepared synthetic mafic compositions by mixing synthetic oxides according to the compositions of mineral end-members: composition M1 (30 wt.% fayalite + 70 wt.% magnetite) and composition M2 (60 wt.% fayalite + 40 wt.% magnetite) to which we added variable amounts of fluorite (Table 2). The average mineral compositions of fayalite and magnetite are from Borrok et al. (1998).

Abundant studies have been conducted on the felsic rocks in the Bushveld Complex (e.g. Hatton and Schweitzer, 1995; Mathez et al., 2013). Using previous studies, we prepared two rhyolitic glasses representative of the felsic end-members (Fig. 3): F1 is representative of the average composition of the rhyolite of the Schrikkloof Formation, whereas F2 is the average composition of the felsic (i.e. rhyolitic) rocks from Dullstroom, Schrikkloof and Kwaggasnek Formations. F1 has a higher concentration of K₂O whereas F2 has a higher FeOtot concentration.

3.2. Preparation of starting materials

For the natural mafic end-member, powdered samples of SA15, SA31 and SA25 were mixed together in ethanol. For the synthetic mafic end-members we mixed high-purity commercially purchased oxide powders (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO and MgO). Synthetic and natural dry starting materials were homogenized in an agate planetary ball mill for a minimum of 2 h.

For the felsic compositions we mixed high-purity oxides and carbonates and homogenized the powders in an agate planetary ball mill. The powder mixture was then melted in a Pt crucible at 1600 °C (atmospheric oxygen fugacity; fO₂) for 3 h. The rhyolitic glass was then ground in a steel mortar (to a grain size ~2 mm) and re-melted in the furnace (1600 °C, 3.5 h) in order to homogenize the material and to promote complete degassing of CO₂. After quenching, parts of the glasses were separated, mounted in epoxy, polished and analyzed by electron microprobe (F1 and F2 in the Table 1).

The starting materials for experiments were produced by mixing mafic end-members (M0, M1 and M2) and felsic end-members (F1 and F2) in specific proportions (Table 2). In some experiments, deionized water was added to the starting material (see the column H₂O in Table 2). In exper-
ments using synthetic mafic starting compositions (M1 and M2), we also added fluorine (as CaF$_2$) in varying amounts.

3.3. Experimental conditions and methods

According to Buchanan et al. (2004) the maximum thickness of the Rooiberg Group within the Transvaal Basin is approximately 6 km. A magma chamber situated at the base of the Rooiberg Group would therefore attain a maximum pressure of about 2 kbars. Kleemann and Twist (1989) suggest that the nearby coeval granite was emplaced at a high level and estimated a pressure of about 1 kbar during the crystallization of the upper part of the granite intrusion based on a 3 km thick cover of Rooiberg Group felsites. Consequently, a pressure of 1 kbar was chosen for most experiments but several were run at 2 kbars.

The experiments were performed in internally heated pressure vessels (IHPV), at the Institute of Mineralogy, Leibniz Universität Hannover (Berndt et al., 2002). Experimental conditions are summarized in Table 3. Pressure was directly measured with the Shaw membrane technique at controlled O_2 concentrations, we used an autoclave with Ar as the sole pressure medium. In these experiments, O_2 ranges from FMQ (fayalite-magnetite-quartz redox equilibrium) in dry conditions to FMQ+3.3 under fluid saturated conditions. Experiments at controlled O_2 were conducted using a vessel equipped with a H$_2$-membrane which allows monitoring and adjustment of the hydrogen pressure (H_2) and thus the O_2 inside the vessel. The evolution of H_2 pressure (H_2) in the vessel was directly measured with the Shaw membrane technique applied at Hannover (Berndt et al., 2002). Experiments were run for 4–500 h (Table 3).

Starting materials were weighed and placed in Au capsules (20 mm in length and 2.8 mm in internal diameter, with a 0.2 mm wall thickness). One end of each capsule was welded shut before the starting material was inserted. Deionized water was added to some samples (Table 2). Open capsule ends of dry samples were immediately welded shut whereas water-bearing samples were frozen in liquid nitrogen before they were welded shut. This method minimizes the loss of water due to vaporization during welding. Capsules were weighed after welding and then placed in a dry furnace at 150 °C for 1–2 h before they were weighed again, to check for any loss of material. Re-weighing of the capsules after the experimental runs showed identical weights for most capsules indicating that no volatiles were lost during the experiments. Small chips of experimental products (about 2 mm in diameter) of each sample were prepared as polished thin sections or mounted in epoxy for electron microprobe analyses.

3.4. Electron microprobe analyses

The analyses of the experimental products were performed at the Leibniz Universität Hannover, and at BGR. Both institutes use a Cameca SX100 electron microprobe equipped with five WDS detectors. Operating conditions were set at 15 kV with a 10 nA beam current. We used a focused beam (1 μm) for minerals and a defocused beam (5–20 μm) for glasses. The peak counting times for glasses were 10 s for Si, Ti, Al, Fe, Mn, Mg and Ca, and 8 s for the alkalis. The elements Na, K, Si, Ca and Fe were analyzed first. Subsequent analyses of F were performed using a second set of analytical conditions (60 nA), and the counting time was 120 s on peak and 60 s for background. More details on the method used for fluorine measurements can be found in Zhang et al. (2016). For glasses and minerals, we used the following standards for K$_x$ X-ray line calibration: albite for Na, orthoclase for K, wollastonite for Si and Ca, TiO$_2$ for Ti, Fe$_2$O$_3$ for Fe, MgO for Mg, Mn$_2$O$_4$ for Mn. Raw data were corrected using the PAP routine (Zhang et al., 2016). The precision for oxide concentrations was better than 1%. No significant alkali loss (within uncertainty) was detected during measurements.

3.5. Water content in the glass and oxygen fugacity

The water content of the homogenous glass in sample B0a (the only super-liquidus experiment) was determined by Fourier transform infra-red (FTIR) spectroscopy using the mid-infrared (MIR) range (i.e. wave numbers between 400 and 4000 cm$^{-1}$ corresponding to wavelengths of 25–2.5 μm). We obtained a value of 1.48 wt.% H$_2$O. For other samples the water contents were estimated from a combination of microprobe totals (by difference method), and added water and melt proportions (mass balance calculation). The typical error is 0.5 wt.% H$_2$O. The water content of sample B0a (1.48 wt.%), as determined by IR, allowed us to evaluate the accuracy of the ‘by-difference’ method (e.g., Devine et al., 1995). The calculated value (i.e. 1.0 ± 0.5 wt.% H$_2$O)

Table 1

<p>| Compositions of end-members used for the preparation of starting compositions (wt.%). |
|------|------|------|------|------|------|------|------|------|------|------|------|------|</p>
<table>
<thead>
<tr>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>FeO$_{total}$</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Ca</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>P$_2$O$_5$</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>17.10</td>
<td>0.11</td>
<td>0.14</td>
<td>55.39</td>
<td>0.79</td>
<td>0.31</td>
<td>13.37</td>
<td>0.01</td>
<td>0.01</td>
<td>12.79</td>
<td>100.06</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>10.18</td>
<td>11.15</td>
<td>0.18</td>
<td>77.32</td>
<td>0.89</td>
<td>0.27</td>
<td>99.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>19.36</td>
<td>6.34</td>
<td>0.14</td>
<td>72.43</td>
<td>1.36</td>
<td>0.36</td>
<td>99.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>75.98</td>
<td>0.2</td>
<td>11.53</td>
<td>2.98</td>
<td>0.06</td>
<td>0.54</td>
<td>0.25</td>
<td>2.42</td>
<td>6.00</td>
<td>99.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>75.26</td>
<td>0.31</td>
<td>11.87</td>
<td>3.62</td>
<td>0.14</td>
<td>0.77</td>
<td>0.79</td>
<td>2.35</td>
<td>4.98</td>
<td>0.05</td>
<td>100.14</td>
<td></td>
</tr>
</tbody>
</table>

Ca is dominantly under the form of CaF$_2$ in M0 and is therefore not stated as CaO.
Table 2
Compositions (wt.%) of starting materials, calculated from weight proportions of natural samples and synthetic glasses.

<table>
<thead>
<tr>
<th>Run</th>
<th>Proportions (wt.%)</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO₉₉</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>F</th>
<th>F₂O₅C</th>
<th>H₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₀a exp1</td>
<td>60% F₁ + 40% M₀</td>
<td>51.99</td>
<td>0.17</td>
<td>7.28</td>
<td>24.00</td>
<td>0.31</td>
<td>0.47</td>
<td>7.47</td>
<td>1.53</td>
<td>3.46</td>
<td>5.02</td>
<td>2.90</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₀b exp2</td>
<td>51.88 0.17 7.25 24.13 0.31 0.47 7.50 1.52 3.44 5.03 2.91 99.6</td>
<td></td>
</tr>
<tr>
<td>A₀c exp3</td>
<td>52.21 0.17 7.27 24.97 0.32 0.47 6.61 1.53 3.45 4.43 2.56 99.6</td>
<td></td>
</tr>
<tr>
<td>A₅a exp1</td>
<td>57% F₁ + 38% M₀</td>
<td>49.29</td>
<td>0.16</td>
<td>6.90</td>
<td>22.73</td>
<td>0.30</td>
<td>0.44</td>
<td>7.11</td>
<td>1.45</td>
<td>3.27</td>
<td>4.77</td>
<td>2.76</td>
<td>5</td>
<td>94.4</td>
<td></td>
</tr>
<tr>
<td>A₅b exp2</td>
<td>49.43 0.16 6.91 23.04 0.30 0.44 7.04 1.45 3.28 4.72 2.73 94.8</td>
<td></td>
</tr>
<tr>
<td>B₀a exp2</td>
<td>75% F₁ + 25% M₀</td>
<td>60.29</td>
<td>0.18</td>
<td>8.98</td>
<td>16.48</td>
<td>0.20</td>
<td>0.51</td>
<td>5.01</td>
<td>1.89</td>
<td>4.28</td>
<td>3.30</td>
<td>1.91</td>
<td>99.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₀b exp3</td>
<td>60.23 0.18 8.95 16.79 0.20 0.51 4.86 1.89 4.26 3.20 1.85 99.7</td>
<td></td>
</tr>
<tr>
<td>C₀a exp3</td>
<td>35% F₁ + 65% M₀</td>
<td>37.30</td>
<td>0.15</td>
<td>3.95</td>
<td>44.97</td>
<td>0.60</td>
<td>0.42</td>
<td>6.23</td>
<td>0.82</td>
<td>1.85</td>
<td>4.26</td>
<td>2.46</td>
<td>99.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₂a exp4</td>
<td>58.5% F₂ + 39% M₁ + 0.5% CaF₂</td>
<td>47.26</td>
<td>4.17</td>
<td>6.96</td>
<td>33.31</td>
<td>0.37</td>
<td>0.54</td>
<td>0.85</td>
<td>1.41</td>
<td>2.96</td>
<td>0.03</td>
<td>0.24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₄a exp4</td>
<td>57.6% F₂ + 38.4% M₁ + 0.5% CaF₂</td>
<td>46.29</td>
<td>4.09</td>
<td>6.82</td>
<td>32.63</td>
<td>0.36</td>
<td>0.53</td>
<td>0.84</td>
<td>1.38</td>
<td>2.90</td>
<td>0.02</td>
<td>0.24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₆a exp4</td>
<td>56.1% F₂ + 37.4% M₁ + 0.5% CaF₂</td>
<td>45.32</td>
<td>4.00</td>
<td>6.68</td>
<td>31.95</td>
<td>0.35</td>
<td>0.52</td>
<td>0.83</td>
<td>1.35</td>
<td>2.84</td>
<td>0.02</td>
<td>0.24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₂b, E₂a exp4-5</td>
<td>58.5% F₂ + 39% M₂ + 0.5% CaF₂</td>
<td>50.58</td>
<td>2.46</td>
<td>6.95</td>
<td>31.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.86</td>
<td>1.41</td>
<td>2.96</td>
<td>0.03</td>
<td>0.24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₄a exp5</td>
<td>57.6% F₂ + 38.4% M₂ + 0.5% CaF₂</td>
<td>49.54</td>
<td>2.41</td>
<td>6.80</td>
<td>30.86</td>
<td>0.53</td>
<td>0.56</td>
<td>0.85</td>
<td>1.38</td>
<td>2.90</td>
<td>0.02</td>
<td>0.24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₆b, E₆a exp4-5</td>
<td>56.1% F₂ + 37.4% M₂ + 0.5% CaF₂</td>
<td>48.50</td>
<td>2.36</td>
<td>6.66</td>
<td>30.21</td>
<td>0.52</td>
<td>0.55</td>
<td>0.84</td>
<td>1.35</td>
<td>2.84</td>
<td>0.02</td>
<td>0.24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₂b exp6</td>
<td>57.6% F₂ + 38.4% M₂ + 2.5% CaF₂</td>
<td>49.54</td>
<td>2.41</td>
<td>6.80</td>
<td>30.86</td>
<td>0.53</td>
<td>0.56</td>
<td>2.28</td>
<td>1.38</td>
<td>2.90</td>
<td>0.02</td>
<td>1.21</td>
<td>0.70</td>
<td>98.0</td>
<td></td>
</tr>
<tr>
<td>E₄b exp6</td>
<td>56.1% F₂ + 37.4% M₂ + 2.5% CaF₂</td>
<td>48.50</td>
<td>2.36</td>
<td>6.66</td>
<td>30.21</td>
<td>0.52</td>
<td>0.55</td>
<td>2.27</td>
<td>1.35</td>
<td>2.84</td>
<td>0.02</td>
<td>1.21</td>
<td>0.70</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>E₆b exp6</td>
<td>54.9% F₂ + 36.6% M₂ + 2.5% CaF₂</td>
<td>47.47</td>
<td>2.31</td>
<td>6.52</td>
<td>29.56</td>
<td>0.51</td>
<td>0.54</td>
<td>2.26</td>
<td>1.32</td>
<td>2.78</td>
<td>0.02</td>
<td>1.21</td>
<td>0.70</td>
<td>94.0</td>
<td></td>
</tr>
<tr>
<td>G₀a, H₀a, I₀a exp7-8-9</td>
<td>75.2% F₂ + 18.8% M₂ + 6% CaF₂</td>
<td>59.42</td>
<td>1.33</td>
<td>8.89</td>
<td>17.17</td>
<td>0.30</td>
<td>0.64</td>
<td>4.92</td>
<td>1.81</td>
<td>3.81</td>
<td>0.03</td>
<td>2.92</td>
<td>1.69</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>G₀b, H₀b, I₀b exp7-8-9</td>
<td>70.4% F₂ + 17.6% M₂ + 12% CaF₂</td>
<td>56.89</td>
<td>1.27</td>
<td>8.51</td>
<td>16.43</td>
<td>0.29</td>
<td>0.61</td>
<td>7.77</td>
<td>1.74</td>
<td>3.64</td>
<td>0.03</td>
<td>4.88</td>
<td>2.82</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>G₀c, H₀c, I₀c exp7-8-9</td>
<td>60.8% F₂ + 15.2% M₂ + 24% CaF₂</td>
<td>48.04</td>
<td>1.07</td>
<td>7.18</td>
<td>13.88</td>
<td>0.24</td>
<td>0.51</td>
<td>17.73</td>
<td>1.47</td>
<td>3.08</td>
<td>0.03</td>
<td>11.71</td>
<td>6.77</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>J₀a exp10</td>
<td>70.4% F₂ + 17.6% M₂ + 6% CaF₂</td>
<td>55.85</td>
<td>1.25</td>
<td>8.36</td>
<td>16.14</td>
<td>0.28</td>
<td>0.60</td>
<td>4.62</td>
<td>1.70</td>
<td>3.58</td>
<td>0.03</td>
<td>2.75</td>
<td>1.59</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>J₀b exp10</td>
<td>65.6% F₂ + 16.4% M₂ + 12% CaF₂</td>
<td>53.48</td>
<td>1.19</td>
<td>8.00</td>
<td>15.44</td>
<td>0.27</td>
<td>0.57</td>
<td>7.30</td>
<td>1.64</td>
<td>3.42</td>
<td>0.03</td>
<td>4.58</td>
<td>2.65</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>J₀c exp10</td>
<td>56% F₂ + 14% M₂ + 24% CaF₂</td>
<td>45.16</td>
<td>1.01</td>
<td>6.75</td>
<td>13.05</td>
<td>0.23</td>
<td>0.48</td>
<td>16.67</td>
<td>1.38</td>
<td>2.90</td>
<td>0.03</td>
<td>11.00</td>
<td>6.36</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Normalized bulk sample compositions calculated from weighing (precision ± 0.1 mg) of the different natural samples and synthetic glass ± H₂O. Ca (were introduced as CaF₂) was recalculated as CaO; F was recalculated as F₂O₅C (for compositional balance).
is in relatively good agreement with the H2O concentration measured by FTIR. The water contents of the experimental glasses are presented in Table 4. The water activity (aH2O) was calculated from the H2O content in the melt using the model of Burnham (1994). This model works well up to 2 kbar (e.g. Berndt et al., 2005).

We used several methods to estimate the oxygen fugacity in our experiments. Under H2O-saturated conditions and intrinsic fO2 conditions of the IHPV, the oxygen fugacity was determined to be 3.3 log units above the oxygen fugacity of the fayalite-magnetite-quartz (FMQ) solid oxygen buffer (hereafter labeled FMQ+3.3). For water-bearing experiments performed at the intrinsic fO2 conditions, which are not saturated in a fluid phase, we used calculated aH2O values to estimate the oxygen fugacity of the runs following the method described by Botcharnikov et al. (2005). For the G, H and I series, which were conducted at nominally dry conditions (no fluid added), we assumed an aH2O of 0.05. This is because such experiments are not strictly water-free for two reasons: (1) it is nearly impossible to avoid adsorbed water on the surface of the glass grains, and (2) hydrogen can be present in the pressure medium (gas) and may diffuse through the noble metal capsules. Thus in nominally dry experiments, a fluid phase was not present, but the silicate melts contained small amounts of water mainly present as OH groups (0.3–1.0 wt.% depending on pressure and extent of crystallization; Almeev et al., 2012).

Other experiments were performed under controlled reduced oxygen fugacity conditions. For these experiments, H2 was added to the Ar pressure medium and the autoclave was equilibrated at a fO2 of FMQ+1 for water-saturated conditions. The dissociation of water is the main reaction controlling redox equilibria inside the capsules. Using the estimated aH2O values, the prevailing fO2 was calculated for each water-undersaturated experiment as log fO2caps = log fO2apparent + 2log (aH2O) (see also Botcharnikov et al., 2005, 2008) where log fO2apparent is the oxygen fugacity that is expected in the system at aH2O = 1.

Results of aH2O and fO2 calculations are presented in the Table 3. The error in fO2 mainly depends on the uncertainty of the melt water content and thus aH2O. In water-saturated samples or in experiments approaching water-saturated conditions, errors are expected to be very low, because a change in melt water content does not result in significant changes of aH2O and fO2. In contrast, in highly water-undersaturated samples, a change in water content (0.5 wt.%) implies distinct changes in aH2O and fO2. We estimate that the overall error in the calculated fO2 is about ~0.2 log units (Botcharnikov et al., 2005).
<table>
<thead>
<tr>
<th>Sample</th>
<th>T [°C]</th>
<th>P [kbar]</th>
<th>Run duration (h)</th>
<th>fO_2</th>
<th>fH_2 [bar]</th>
<th>aH$_2$O</th>
<th>Phases</th>
<th>Glass composition (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0a</td>
<td>1010</td>
<td>2</td>
<td>4</td>
<td>FMQ+1.4</td>
<td>0.11</td>
<td>Mt (15), Flu (5), Si-glass (76), Fe-glass (4)</td>
<td>65% SiO$_2$, 11% FeO & 47% SiO$_2$, 26% FeO</td>
<td></td>
</tr>
<tr>
<td>A0b</td>
<td>1010</td>
<td>2.08</td>
<td>4</td>
<td>FMQ−1.0</td>
<td>7.64</td>
<td>Flu (3), Glass (97)</td>
<td>54% SiO$_2$, 24% FeO</td>
<td></td>
</tr>
<tr>
<td>A0c</td>
<td>1010</td>
<td>1</td>
<td>4</td>
<td>FMQ+1.7</td>
<td>0.16</td>
<td>Mt (18), Flu (5), Si-glass (66), Fe-glass (10)</td>
<td>66% SiO$_2$, 12% FeO & 49% SiO$_2$, 25% FeO</td>
<td></td>
</tr>
<tr>
<td>A5a</td>
<td>1010</td>
<td>2.08</td>
<td>4</td>
<td>FMQ+3.3</td>
<td>0.98</td>
<td>Mt (19), Flu (4), Glass (77)</td>
<td>67% SiO$_2$, 6.8% FeO</td>
<td></td>
</tr>
<tr>
<td>A5b</td>
<td>1010</td>
<td>2.08</td>
<td>4</td>
<td>FMQ+1.0</td>
<td>7.64</td>
<td>Mt (10), Flu (0.3), Glass (90)</td>
<td>55% SiO$_2$, 17% FeO</td>
<td></td>
</tr>
<tr>
<td>B0a</td>
<td>1010</td>
<td>2.08</td>
<td>4</td>
<td>FMQ−0.4</td>
<td>7.64</td>
<td>Glass (100)</td>
<td>61% SiO$_2$, 1.6% FeO</td>
<td></td>
</tr>
<tr>
<td>B0b</td>
<td>1010</td>
<td>1</td>
<td>4</td>
<td>FMQ+0.8</td>
<td>0.06</td>
<td>Mt (9), Flu (6), Si-glass (79), Fe-glass (5)</td>
<td>67% SiO$_2$, 10% FeO & 46% SiO$_2$, 22% FeO</td>
<td></td>
</tr>
<tr>
<td>C0a</td>
<td>1010</td>
<td>1</td>
<td>4</td>
<td>FMQ+1.8</td>
<td>0.18</td>
<td>Mt (38), Flu (5), Si-glass (32), Fe-glass (22)</td>
<td>73% SiO$_2$, 9% FeO & 45% SiO$_2$, 33% FeO</td>
<td></td>
</tr>
<tr>
<td>D2a</td>
<td>1010</td>
<td>2</td>
<td>24</td>
<td>FMQ+3.1</td>
<td>0.82</td>
<td>Mt (38), Tri (13), Ap (0), Glass (49)</td>
<td>69% SiO$_2$, 3.3% FeO</td>
<td></td>
</tr>
<tr>
<td>D4a</td>
<td>1010</td>
<td>2</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.82</td>
<td>Mt (33), Glass (67)</td>
<td>69% SiO$_2$, 3.3% FeO</td>
<td></td>
</tr>
<tr>
<td>D6a</td>
<td>1010</td>
<td>2</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.82</td>
<td>Mt (34), Glass (66)</td>
<td>70% SiO$_2$, 3.5% FeO</td>
<td></td>
</tr>
<tr>
<td>D2b</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.2</td>
<td>0.78</td>
<td>Mt (32), Glass (68)</td>
<td>70% SiO$_2$, 3.5% FeO</td>
<td></td>
</tr>
<tr>
<td>D6b</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.78</td>
<td>Mt (36), Glass (64)</td>
<td>73% SiO$_2$, 3.4% FeO</td>
<td></td>
</tr>
<tr>
<td>E2a</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.2</td>
<td>0.78</td>
<td>Mt (32), Glass (68) with nano-emulsion</td>
<td>68% SiO$_2$, 7.5% FeO</td>
<td></td>
</tr>
<tr>
<td>E4a</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.78</td>
<td>Mt (33), Glass (67) with nano-emulsion</td>
<td>69% SiO$_2$, 7.3% FeO</td>
<td></td>
</tr>
<tr>
<td>E6a</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.78</td>
<td>Mt (32), Glass (68) with nano-emulsion</td>
<td>67% SiO$_2$, 8.1% FeO</td>
<td></td>
</tr>
<tr>
<td>E2b</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.2</td>
<td>0.78</td>
<td>Mt (35), Glass (65)</td>
<td>70% SiO$_2$, 3.6% FeO</td>
<td></td>
</tr>
<tr>
<td>E4b</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.78</td>
<td>Mt (34), Glass (66)</td>
<td>69% SiO$_2$, 4.5% FeO</td>
<td></td>
</tr>
<tr>
<td>E6b</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ+3.3</td>
<td>0.78</td>
<td>Mt (36), Glass (64)</td>
<td>71% SiO$_2$, 3.9% FeO</td>
<td></td>
</tr>
<tr>
<td>G0a</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ−0.6</td>
<td>3.48</td>
<td>Mt (27), Fa (15), Tri (0), Glass (60)</td>
<td>72% SiO$_2$, 6.7% FeO</td>
<td></td>
</tr>
<tr>
<td>G0b</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ−0.6</td>
<td>3.48</td>
<td>Mt (12), Fa (12), Flu (4), Si-glass (66), Fe-glass (6)</td>
<td>68% SiO$_2$, 10% FeO & 41% SiO$_2$, 36% FeO</td>
<td></td>
</tr>
<tr>
<td>G0c</td>
<td>1010</td>
<td>1</td>
<td>24</td>
<td>FMQ−0.6</td>
<td>3.48</td>
<td>Mt (5), Flu (18), Tri (0), Si-glass (71), Fe-glass (6)</td>
<td>64% SiO$_2$, 11% FeO & 41% SiO$_2$, 30% FeO</td>
<td></td>
</tr>
<tr>
<td>H0a</td>
<td>1010</td>
<td>1</td>
<td>500</td>
<td>FMQ−1.4</td>
<td>0.05</td>
<td>Mt (2.5), Glass (97.5) with nano-emulsion</td>
<td>59% SiO$_2$, 14% FeO</td>
<td></td>
</tr>
<tr>
<td>H0b</td>
<td>1010</td>
<td>1</td>
<td>500</td>
<td>FMQ−1.4</td>
<td>0.05</td>
<td>Mt (3.5), Flu (2.5), Glass (94) with nano-emulsion</td>
<td>59% SiO$_2$, 13% FeO</td>
<td></td>
</tr>
<tr>
<td>H0c</td>
<td>1010</td>
<td>1</td>
<td>500</td>
<td>FMQ−1.4</td>
<td>0.05</td>
<td>Mt (2), Flu (16), Si-glass (60), Fe-glass (22)</td>
<td>61% SiO$_2$, 12% FeO & 49% SiO$_2$, 20% FeO</td>
<td></td>
</tr>
<tr>
<td>I0a</td>
<td>1010</td>
<td>1</td>
<td>168</td>
<td>FMQ+1.0</td>
<td>2.30</td>
<td>Mt (18), Tri (10), Ol (0), Glass (72) with nano-emulsion</td>
<td>75% SiO$_2$, 2.8% FeO</td>
<td></td>
</tr>
<tr>
<td>I0b</td>
<td>1010</td>
<td>1</td>
<td>168</td>
<td>FMQ+1.0</td>
<td>2.30</td>
<td>Mt (13), Flu (3), Tri (0), Si-glass (81), Fe-glass (4)</td>
<td>67% SiO$_2$, 6.9% FeO & 51% SiO$_2$, 15% FeO</td>
<td></td>
</tr>
<tr>
<td>I0c</td>
<td>1010</td>
<td>1</td>
<td>168</td>
<td>FMQ+1.0</td>
<td>2.30</td>
<td>Mt (7), Flu (18), Tri (0), Si-glass (60), Fe-glass (16)</td>
<td>68% SiO$_2$, 7.3% FeO & 46% SiO$_2$, 22% FeO</td>
<td></td>
</tr>
<tr>
<td>J6a</td>
<td>1010</td>
<td>1</td>
<td>120</td>
<td>FMQ+1.0</td>
<td>0.43</td>
<td>Mt (10), Flu (0.5), Fa (0.5), Glass (89)</td>
<td>63% SiO$_2$, 9.4% FeO</td>
<td></td>
</tr>
<tr>
<td>J6b</td>
<td>1010</td>
<td>1</td>
<td>120</td>
<td>FMQ+1.0</td>
<td>0.43</td>
<td>Mt (10), Flu (5), Fa (2), Glass (83)</td>
<td>63% SiO$_2$, 9.8% FeO</td>
<td></td>
</tr>
<tr>
<td>J6c</td>
<td>1010</td>
<td>1</td>
<td>120</td>
<td>FMQ+1.0</td>
<td>0.43</td>
<td>Mt (10), Flu (18), Fa (2), Glass (70)</td>
<td>63% SiO$_2$, 6.6% FeO</td>
<td></td>
</tr>
</tbody>
</table>

Phase proportions were calculated by mass balance as well as optical estimations. "0" means trace amount. Total iron as FeO. Details on the calculation of oxygen fugacity and water activity can be found in the text. For G, H and I series, we assumed a water activity of 0.05. When the forsterite (Fo) content is >10%, it is defined as olivine. Abbreviations: Ap – apatite, Mt – magnetite, Fa – fayalite, Flu – fluorite, Tri – tridymite, Ol – olivine.
4. EXPERIMENTAL RESULTS

4.1. Phase equilibria and immiscibility textures

Table 3 summarizes the conditions and phase assemblages of experimental runs. Figs. 4 and 5 show representative BSE images of the experimental run products acquired on the electron microprobe and QEMSCAN FEI Quanta 650F at RWTH Aachen. Crystalline phases observed in experiments are fluorite, magnetite, fayalite (or olivine when the forsterite content is higher than 10%), a silica phase (tridymite), and occasionally trace amounts of apatite. Experiments can be classified into three groups: experiments showing distinct liquid immiscibility between

Fig. 4. Back-scattered electron (BSE; a and c) and QEMSCAN (b, d–f) images of experiments showing silicate liquid immiscibility. (a) Sample A0c shows a typical irregularly-shaped (coalesced) patch of Fe-rich glass within Si-rich glass as well as numerous small globules of Fe-rich and Si-rich glass. Large, euhedral grains of magnetite and spherical fluorite also occur. (b) Sample I0c: Magnetite and/or spherical fluorite are preferentially enclosed by the immiscible Fe-rich liquid. (c) Sample C0a: large amounts of Fe- and Si-rich glasses as well as smaller Fe-rich glass globules. Fluorite and magnetite, euhedral grains of tridymite (dark grey) represent the solid phases. (d) Sample H0c: irregularly-shaped (coalesced) patch of Fe-rich glass (or emulsion) within Si-rich glass. Large, euhedral grains of spherical fluorite occur. (e) Sample G0b and (f) Sample H0b: Emulsion of Si-rich and Fe-rich glasses occurring in the Si-rich homogenous glass. Abbreviations: Mt = magnetite, Flu = fluorite, Tri = tridymite.
two silicate liquids, experiments containing a nano-emulsion of immiscible liquids and experiments with a single homogeneous silicate glass.

In the first type of experimental products, pairs of distinct immiscible liquids occur in nine samples, A0a, A0c, B0b, C0a, G0b, G0c, H0c, I0b and I0c. Sharp two-liquid interfaces are usually observed (Fig. 4a–d). Immiscible liquids form small globules, or branching, skeletal structures within each other that may coalesce and form larger aggregates. The Fe-rich immiscible liquid in some of these samples also hosts nano-scale emulsion of Si-rich liquid (Fig. 4d). No compositional difference between small and large droplets is observed, supporting complete equilibration of the two liquids. The Fe-rich liquid has very small wetting angles with magnetite and fluorite. Magnetite and fluorite crystals preferentially occur in the Fe-rich immiscible melts (Fig. 4b) but they are also found in the Si-rich glasses. Tridymite crystals are also hosted by both immiscible melts. Fluorite crystals are present in all the samples showing distinct liquid immiscibility.

In the second type of experimental products, the immiscible conjugates form ‘emulsion’ structures on the scale of <100–500 nm (Fig. 4e–f). This feature is interpreted as a result of a low efficiency of melt–melt separation, possibly caused by close proximity to the apex of the miscibility gap in the multicomponent composition space, just below the binodal (Charlier and Grove, 2012). In some of these experiments, the globule size is too small to measure the composition of the paired immiscible liquids by electron microprobe.

In the third type of experimental products, the samples do not show liquid immiscibility. They are characterized by the ubiquitous presence of magnetite + fluorite ± tridymite ± fayalite (or olivine) ± apatite (Fig. 5). Both euhedral and rounded subhedral magnetite and fluorite crystals, and tiny apatites are observed. In sample G0a and I0a, fayalite and olivine occur as euhedral crystals co-existing with rounded subhedral magnetite (Figs. 5a,b and d). The glass compositions are presented below, but it is worth noting that samples with rhyolitic glass have considerable amounts of magnetite (18–38 wt.%; Table 3), whereas those with a relatively Fe-rich (intermediate) melt have less than 30 wt. % crystals, including magnetite and fluorite.

4.2. Liquid compositions

The compositions of experimental liquids are shown in Fig. 6 where they are compared to immiscible melts in experimental ferrobasaltic systems (Charlier and Grove, 2012). In the first type of experimental products where we observe distinct immiscible pairs, the Si-rich liquids (62.75–73.00 wt.% SiO₂, 6.90–12.48 wt.% FeO_tot and
2.35–4.24 wt.% F) are enriched in Na$_2$O, K$_2$O and Al$_2$O$_3$ (Table 4). The Fe-rich immiscible melts (40.95–51.40 wt.% SiO$_2$, 14.81–36.09 wt.% FeO$_{tot}$ and 4.50–6.45 wt.% F), are enriched in MgO, CaO and TiO$_2$. The partitioning coefficient of F between the Fe- and Si-rich immiscible conjugates is between 1.42 and 2.23 (Fig. 6d), similar to the values observed in the simplified systems Fe$_2$SiO$_4$–Fe$_3$O$_4$–KAlSi$_2$O$_6$–SiO$_2$ ± F ± plagioclase (Lester et al., 2013). Compared to the immiscible pairs produced in dry conditions at 1 bar (Charlier and Grove, 2012), our samples show lower SiO$_2$ contents in the Fe-rich melt and lower Al$_2$O$_3$ in the Si-rich melt (Fig. 6a–c). The distinct Si-rich immiscible melts produced in our study show similar SiO$_2$, CaO and alkali contents compared to the dacites and low-silica rhyolites of the Dullstroom and Damwal Formations. However, they are more primitive than the rhyolite of the Schrikkloof Formation which hosts the Vergenoeg pipe (Fig. 7). The immiscible Si-rich liquids have higher FeO contents and lower Al$_2$O$_3$ contents than any rhyolite from the Rooiberg Group.

The second type of experiments with nano-scale emulsion of immiscible melts is represented by samples H0a, H0b, E2a, E4a and E6a. In these, the glass compositions that we measured are thought to represent the bulk composition of the nano-emulsions (Table 4).

In the last type of experiments that do not show liquid immiscibility, we can also discriminate two groups. The first one (A5a, D series, E2b, E4b, E6b, and G0a and I0a) has rhyolitic liquids (67–74 wt.% SiO$_2$; 2.8–6.8 wt.% FeO$_{tot}$) with relatively low fluorine (1.14–3.01 wt.% F). High SiO$_2$ contents are due to the significant crystallization of magnetite and fayalite (Fig. 6). The second one (A0b, A5b, B0a and J series) has intermediate melt compositions (54–63 wt.% SiO$_2$; 6.6–24 wt.% FeO$_{tot}$), and contain moderate amounts of fluorine (2.99–4.10 wt.% F; Fig. 6).

4.3. Olivine (Fayalite) and magnetite compositions

The compositions of olivine and magnetite in the experimental products are presented in the Supplementary data.
Olivine crystals in three samples (G0a, G0b and I0a) have been analyzed. The composition of the olivine in samples G0a and G0b (SiO2: 29.51–30.42 wt.%; FeOtot: 62.61–64.84 wt.%; Fo number: 7.4–8.2) is classified as fayalite and is similar to the natural samples (Borrok et al., 1998). Whereas sample I0a has olivine with a fayalite content of only 38%. The ratio of FeO to MgO in the olivine crystals as a function of the ratio of FeO to MgO in the liquid phase is shown for our experimental runs in Fig. 8a. We can see that the Kd\textsubscript{Fe-Mg_fayalite-melt} for the limited number of fayalite crystals plots above the line of Kd = 0.3, and that the Kd values for the immiscible Fe-rich liquids are comparable to those for the Si-rich conjugates. The Kd value for olivine in sample I0a is close to 0.3. These observations could be explained by the F-rich characteristics of our experiments, as illustrated in Fig. 8b in which the Kd values are plotted as a function of F (wt.%). With increasing fluorine in the liquids, the Kd value dramatically increases for fayalite, suggesting that fluorine in the liquids complexes primarily with MgO, thus decreasing MgO activity, and shifting the Fe/Mg ratio of crystallizing minerals to higher values. We note that our calculated Kd values (0.49 for G0a, 0.58 and 0.55 for Fe and Si-rich liquids of G0b, respectively) are consistent with those observed in experiments of F-rich Martian basalts (Filberto et al., 2012).

Magnetite compositions range between Mt\textsubscript{0.98Usp0.02} and Mt\textsubscript{0.41Usp0.59} (Mt = magnetite; USp = ulvöspinel). The variation of calculated ulvöspinel end-member contents in magnetite is plotted against the TiO\textsubscript{2} content in equilibrium melts in Fig. 8c. The negative correlation between O\textsubscript{2} and the calculated ulvöspinel content in magnetite is consistent with O\textsubscript{2} being the key factor in controlling the composition of magnetite (Fig. 8d; Buddington and Lindsley, 1964; Toplis and Carroll, 1995).

5. DISCUSSION

5.1. The onset of silicate liquid immiscibility

5.1.1. The role of fluorine

In dry multicomponent magmatic systems, an extreme iron enrichment (>18–19 wt.% FeO) has usually been considered as necessary for the onset of unmixing (Dixon and Rutherford, 1979; Philpotts and Doyle, 1983). Although
the FeO activity probably needs to be high, the experiments of Charlier and Grove (2012) demonstrated that extreme iron enrichment is not necessary to reach the two-liquid field. Liquid immiscibility could also develop during the silica-enrichment that follows Fe–Ti oxide saturation in the melt. This is consistent with our experiments showing that many runs with liquid immiscibility also contain abundant magnetite.

In the case of Vergenoeg-related compositions, distinct liquid immiscibility occur only in samples in which fluorite is observed as a stable phase, which indicates that fluorine is one of the key factors that could facilitate immiscibility. This is consistent with our experiments showing that many runs with liquid immiscibility also contain abundant magnetite.

In the case of Vergenoeg-related compositions, distinct liquid immiscibility occur only in samples in which fluorite is observed as a stable phase, which indicates that fluorine is one of the key factors that could facilitate immiscibility. This is illustrated by the plot of the bulk fluorine contents in experiments versus the liquid immiscible contents of experimental liquids (Fig. 9a), which shows that only fluorspar-rich experiments (>3.4 wt.% bulk F) developed distinct immiscibility. We interpret this as resulting from fluorine complexing with MgO (Filiberto et al., 2012) in the melt, therefore increasing the activity of FeO, which is a favorable condition for the development of liquid immiscibility (Philpotts and Doyle, 1983). Potentially fluorine may also change the shape of the binodal by the reaction of fluorine with Si–O–Si bonds to form Si–F and Al–F bonds (Manning, 1981), which leads to a depolymerization of the melt structure (Dingwell, 1985; Giordano et al., 2004) and therefore a decrease of the liquidus temperature.

Although fluorite-saturation seems to promote the development of silicate liquid immiscibility, a high fluorine content by itself is insufficient to trigger the unmixing. As shown in Fig. 9a, some samples with >2 wt.% fluorine (e.g., J series) did not develop immiscibility. In contrast, Lester et al. (2013) report experiments with lower fluorine contents (<2 wt.%) which also have immiscible Fe-rich and Si-rich liquids.

5.1.2. The role of oxygen fugacity

Oxygen fugacity (fO2) has a significant influence on the development of immiscibility (Naslund, 1983). In our experiments, immiscible liquids occur in experiments performed at relatively reducing conditions from FMQ–1.4 to FMQ+1.8 (Fig. 9b). Naslund (1983) has shown that a high Fe2O3/FeO ratio (high fO2) widens the two-liquid field under super-liquidus conditions and increases the upper temperature limit of immiscibility in the system KAlSi3O8–FeO–Fe2O3–SiO2. This would, in theory, enhance the development of immiscibility. However, most of our experiments run under highly oxidizing environments (>FMQ +3) crystallized considerable amounts of magnetite, which

Fig. 8. (a) FeO/MgO ratio (mol.%) olivine vs FeO/MgO ratio in melt in the G0a, G0b and I0a runs; (b) KdFe–Mg as a function of F (wt.%) for fayalite-bearing experimental charges. The black line is from the linear regression through the data for olivine-bearing Fe–Mg rich basalt (Filiberto et al., 2012); (c) Variation of TiO2 content in the melt and calculated ulvöspinel end-member contents in magnetite from experimental charges. Black lines represent linear regressions through the data (r2 = 0.88) for the immiscible Fe-rich liquids, and (r2 = 0.96) for the Si-rich conjugates. (d) Calculated ulvöspinel end-member contents in magnetite vs ΔFMQ. FMQ = fayalite-magnetite-quartz solid buffer. Lsi = Si-rich liquid, Lfe = Fe-rich liquid.
led to a strong iron depletion in the residual melt (Fig. 9b) and hampered the development of immiscibility. We conclude that the enlargement of the immiscibility field caused by high \(f_O \), as observed by Naslund (1983) in a super-liquidus systems, is strongly counteracted by the stabilization of magnetite and resultant iron depletion that occurs in natural systems. It is worth noting that some F-rich samples, run under relatively reducing conditions, do not show immiscible textures. This implies that immiscibility is not only controlled by the bulk F content and \(f_O \), but that other compositional features must play a dominant role in liquid unmixing.

5.1.3. The effect of water

Fig. 9c shows that distinct silicate liquid immiscibility only developed in the samples with low \(H_2O \) contents, i.e. \(a_{H_2O} < 0.2 \), suggesting that water suppresses the development of silicate liquid immiscibility. This has been confirmed by the comparison between I and J series, which have the same bulk composition (Table 2) and which were conducted at the same \(f_O \) (FMQ +1). The water-saturated J6b and J6c samples show no liquid immiscibility whereas their counterparts, I0b and I0c, contain two liquids. However, the role of water in the development of immiscibility is relatively subtle. We believe that \(H_2O \) may shift the critical temperature of the binodal below the liquid line of descent. Lester et al. (2013) have shown that \(H_2O \) enlarges the solvus in silicate melts and therefore decreases the temperature of the solvus apex. The effect of water on the liquidus temperature of the magma may be important leading to a liquid line of descent that never hits the binodal surface.

5.2. Model for the origin of the Vergenoeg deposit

Based on the experimental results, we propose a model for the petrogenesis of the Vergenoeg deposit. Essentially, the model constitutes a revised and extended version of the model proposed by Crocker (1985). In the case of Vergenoeg, it is envisaged that immiscibility occurred simply as a result of temperature decrease, compositional evolution and enrichment of F in the residual melt. This process possibly resulted in the formation of a stratified magma chamber with the denser Fe-rich melt forming the lower zone of the magma chamber, whereas the overlying Si-rich melt was located in the upper parts (Fig. 10).

Compared to the average composition of the ores (M0), the iron-rich immiscible liquid obtained experimentally contains higher \(SiO_2 \) and lower \(FeO_{tot} \) (Tables 1 and 4). This indicates that the bulk composition of the ore (pipe) may not simply represent a crystallized immiscible Fe-rich melt. As observed in our experiments showing liquid immiscibility, fluorite, together with magnetite and fayalite, are the stable liquidus phases. Thus, we suggest that the pipe may be a cumulate (or crystal mush) coexisting with small proportions of the unmixed Fe-rich melt. The mush, consisting of magnetite, fayalite and interstitial Fe-rich melt, has significantly higher bulk Fe and lower \(Al_2O_3 \) contents compared to the immiscible Fe-rich melt, within the range of the Vergenoeg pipe bulk composition. If the magnetite crystals within this magma were not distributed uniformly,
We therefore believe that the huge amount of fluorine expelled after fayalite + magnetite + fluorite crystallized. At least half of the immiscible Fe-rich melt volume to be fluorite saturation (\(12\%\) F; Table 1), is about two times greater than that in the Fe-rich melt at fluorite saturation (\(6\%\) F; Table 4). This requires at least half of the immiscible Fe-rich melt volume to be expelled after fayalite + magnetite + fluorite crystallized. We therefore believe that the huge amount of fluorine (\(12\%\) F in the ores with a magnetite/fluorite ratio of \(5:1\)) observed in the deposit cannot originate solely from the crystallization of fluorite from the Fe-rich silicate melt. This is supported by fluorite crystals in the pipe which have three types of inclusions: (1) subspherical, composite melt inclusions containing apatite, fayalite and magnetite, which indicate a magmatic origin; (2) two assemblages of primary fluid inclusions and, (3) six assemblages of secondary fluid inclusions (Borrok et al., 1998). The presence of fluid inclusions possibly relates to late stage “fluorine-overprinting” during the evolution of the system. The structurally controlled mineralization took place shortly after pipe emplacement, with the pipe acting as a preferential channel for fluids. Fluorite precipitation was induced by mixing with a second fluid or meteoric waters, or changes in pH. The hydrothermal overprint is also supported by the presence of ferroactinolite (Fe\# > 0.9) in the Vergenoeg deposit (Borrok et al., 1998), as experiments show that such ferroactinolite is not stable at magmatic temperatures (Lledo and Jenkins, 2008). Thus we suggest that the “excess fluorine” is the result of a final stage of evolution of the magmatic (to late-stage magmatic-hydrothermal) system that formed the pipe-filling originally. The isotopic signature of fluorite in the Vergenoeg deposit also supports the suggestion of late magmatic fluids transporting fluorine (Kinnaird et al., 2004).

5.3. Implications for Kiruna-type deposits

The phase relations obtained in this experimental study have general implications for the genesis of magnetite deposits of the Kiruna type.

1. Our experiments indicate that silicate liquid immiscibility plays a role in the formation of Kiruna-type deposits as emphasized in several studies (e.g., Nystrom and Henriquez, 1994; Travisany et al., 1995; Naslund et al., 2002; Henriquez et al., 2003; Chen et al., 2010), in contrast to the magmatic-hydrothermal models (Rhodes and Oreskes, 1995, 1999; Haynes et al., 1995; Barton and Johnson, 1996, 2004; Rhodes and Oreskes, 1999; Haynes, 2000; Sillitoe and Burrows, 2002). However, the nearly pure “oxide melt” often assumed in these magmatic models cannot be confirmed by our data.
Although high-grade iron-rich melts can be produced experimentally in some simple systems (Weidner, 1982; Bogaerts and Schmidt, 2006; Lester et al., 2013), it is not observed in multi-component systems and the most Fe-rich liquid observed in this study contains ~36 wt.% FeO$_{tot}$. Accordingly, the massive iron ores may rather represent cumulates that crystallized from a Fe-rich immiscible melt.

(2) Enrichment of fluorine in residual melts is a favorable condition for liquid immiscibility. This is consistent with the experiments of Lester et al. (2013), which showed that additions of fluorine at 2 kbars increases the T-X (chemical composition) range of the miscibility gap in the system K$_2$O-FeO-Fe$_2$O$_3$-Al$_2$O$_3$-SiO$_2$. In addition, the reduction in melt viscosity produced by the presence of fluorine, especially if the systems are water-poor (Baker and Vaillancourt, 1995; Bartels et al., 2013), favors the efficient separation of conjugate liquids by density, an important component of the immiscible petrogenetic model for the Kiruna ore deposit type. Moreover, most Kiruna-type deposits are enriched both in fluorine and phosphorous. Many experiments have shown that phosphorous promotes liquid immiscibility (Watson, 1976; Ryerson and Hess, 1978; Visser and Koster van Groos, 1979; Bogaerts and Schmidt, 2006; Charlier and Grove, 2012), by: (1) enhancing iron enrichment during differentiation
because it destabilizes magnetite; (2) depressing the liquidus temperature, and expanding the two-liquid field. As stated above, fluorine can increase the activity of FeO in the melt and depress the liquidus temperature. Thus a F-P-rich system is a favorable magmatic environment for the development of liquid immiscibility.

(3) The presence of water is not favorable for the development of silicate liquid immiscibility because it strongly increases oxygen fugacity, which promotes magnetite crystallization. Water thus is a limiting factor for a significant Fe enrichment during differentiation and inhibits the development of immiscibility.

6. CONCLUSIONS

Experimental results indicate that the Vergenoeg pipe may have formed from a stratified magma chamber hosting two immiscible silicate melts. Immiscibility in the shallow magma chamber was potentially induced by high fluorine concentrations in the magma, relatively water-poor conditions and low oxygen fugacity. Fractional crystallization of magnetite, fayalite and possibly fluorite led to the formation of a crystal mush in the lower part of the magma chamber. The extremely high fluorite content of the Vergenoeg pipe is, in part, attributed to hydrothermal fluids, with the pipe acting as a preferential channel for fluid migration.

ACKNOWLEDGMENTS

Constructive reviews and suggestions by Dr. Adam Simon and an anonymous reviewer helped to improve the manuscript. André Stechern, Robert Balzer, and Julian Feige are thanked for their aid during the IHPV experiments and sample preparation, respectively. We also thank Renat Almeev and Chao Zhang for their assistance with microprobe analyses. TH acknowledges support by a Marie Curie Individual Fellowship within the Horizon 2020 – Research and Innovation Framework Programme (656923), China Nature Science Foundation of Sciences (41502052) and the “Fundamental Research Funds for the Central Universities (2652015054)”. BC is a Research Associate of the Belgian Fund for Scientific Research-FNRS. ON was supported by a Marie-Curie Intra European Fellowship and a FNRS postdoctoral fellowship.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2017.01.025.

REFERENCES

Nystro¨m J. O. and Henrı´quez F. (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Econ. Geol. 89, 820–839.

Parak T. (1975) Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. Econ. Geol. 70, 1242–1258.

Associate editor: Rajdeep Dasgupta