[en] Despite a growing interest in CHF2 in medicinal chemistry, there is a lack of efficient methods for the insertion of CHF(18) F into druglike compounds. Herein described is a photoredox flow reaction for (18) F-difluoromethylation of N-heteroaromatics that are widely used in medicinal chemistry. Following the two-step synthesis for a new (18) F-difluoromethylation reagent, the photoredox reaction is completed within two minutes and proceeds by C-H activation, circumventing the need for pre-functionalization of the substrate. The method is operationally simple and affords straightforward access to radiolabeled N-heteroaromatics with high molar activity suitable for biological in vivo studies and clinical application.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. Mercier, L. Provins, J. Hannestad in Comprehensive Medicinal Chemistry III, Vol. 7.02 (Eds.: S. Chackalamannil, D. Rotella, E. W. Ward), Elsevier, Amsterdam, 2017, pp. 20–64.
X. Deng, J. Rong, L. Wang, N. Vasdev, L. Zhang, L. Josephson, S. H. Liang, Angew. Chem. Int. Ed. 2019, 58, 2580.
S. Preshlock, M. Tredwell, V. Gouverneur, Chem. Rev. 2016, 116, 719;
D. van der Born, A. Pees, A. J. Poot, R. V. A. Orru, A. D. Windhorst, D. J. Vugts, Chem. Soc. Rev. 2017, 46, 4709;
H. H. Coenen, J. Ermert, J. Clin. Trans. Imaging. 2018, 6, 169.
M. Huiban, M. Tredwell, S. Mizuta, A. Wan, X. Zhang, L. T. Collier, V. Gouverneur, J. Passchier, Nat. Chem. 2013, 5, 941;
D. van der Born, C. Sewing, J. D. M. Herscheid, A. D. Windhorst, R. V. A. Orru, D. J. Vugts, Angew. Chem. Int. Ed. 2014, 53, 11046;
Angew. Chem. 2014, 126, 11226;
S. Verhoog, C. W. Kee, Y. Wang, T. Khotavivattana, T. C. Wilson, V. Kersemans, S. Smart, M. Tredwell, B. G. Davis, V. Gouverneur, J. Am. Chem. Soc. 2018, 140, 1572.
F. O'Hara, A. C. Burns, M. R. Collins, D. Dalvie, M. A. Ornelas, A. D. N. Vaz, Y. Fujiwara, P. S. Baran, J. Med. Chem. 2014, 57, 1616.
Y. Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, E. Gershonov, S. Saphier, J. Med. Chem. 2017, 60, 797;
C. D. Sessler, M. Rahm, S. Becker, J. M. Goldberg, F. Wang, S. J. Lippard, J. Am. Chem. Soc. 2017, 139, 9325.
S. Verhoog, L. Pfeifer, T. Khotavivattana, S. Calderwood, T. L. Collier, K. Wheelhouse, M. Tredwell, V. Gouverneur, Synlett 2016, 27, 25;
H. Shi, A. Braun, L. Wang, S. H. Liang, N. Vasdev, T. Ritter, Angew. Chem. Int. Ed. 2016, 55, 10786;
Angew. Chem. 2016, 128, 10944;
G. Yuan, F. Wang, N. A. Stephenson, L. Wang, B. H. Rotstein, N. Vasdev, P. Tang, S. H. Liang, Chem. Commun. 2017, 53, 126.
For reviews on difluoromethylation, see:
J. Rong, C. Ni, J. Hu, Asian J. Chem. 2017, 6, 139;
D. E. Yerien, S. Barata-Vallejo, A. Postigo, Chem. Eur. J. 2017, 23, 14676;
A. Lemos, C. Lemaire, A. Luxen, Adv. Synth. Catal. 2019, https://doi.org/10.1002/adsc.201801121. For specific publications
Y. Ji, T. Bruecki, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. USA 2011, 108, 14411;
B. R. Langlois in Modern Synthesis Processes and Reactivity of Fluorinated Compounds (Eds.: H. Groult, F. R. Leroux, A. Tressaud), Elsevier, Amsterdam, 2017, chap. 5, pp. 125–140;
Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494;
A. Sakamoto, H. Kashiwagi, K. Maruoka, Org. Lett. 2017, 19, 5126;
T. T. Tung, S. B. Christensen, J. Nielsen, Chem. Eur. J. 2017, 23, 18125;
S. Zhu, Y. Liu, H. Li, X. Xu, F. Qing, J. Am. Chem. Soc. 2018, 140, 11613.
J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu, J. Hu, Angew. Chem. Int. Ed. 2016, 55, 2743;
Angew. Chem. 2016, 128, 2793;
W. Fu, X. Han, M. Zhu, C. Xu, Z. Wang, B. Ji, X. Hao, M. Song, Chem. Commun. 2016, 52, 13413.
A. T. Dobson, B. B. Little, L. L. Scottie, Am. J. Obstet. Gynecol. 1998, 179, 527.
D. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224.
C. Fenton, M. K. Keating, K. A. Lyseng-Williamson, Drugs 2006, 66, 477.
H. Klitgaard, P. Verdru, Expert Opin. Drug Discovery 2007, 2, 1537;
M. Gillard, B. Fuks, K. Leclercq, A. Matagne, Eur. J. Pharmacol. 2011, 664, 36.
N. B. Nabulsi, J. Mercier, D. Holden, S. Carré, S. Najafzadeh, M.-C. Vandergeten, S. Lin, A. Deo, N. Price, M. Wood, T. Lara-Jaime, F. Montel, M. Laruelle, R. E. Carson, J. Hannestad, Y. Huang, J. Nucl. Med. 2016, 57, 777.
J. Mercier, L. Provins, A. Valade, Drug Discovery Today Technol. 2017, 25, 45;
C. Warnier, C. Lemaire, G. Becker, G. Zaragoza, F. Giacomelli, J. Aerts, M. Otabashi, M. A. Bahri, J. Mercier, A. Plenevaux, A. Luxen, J. Med. Chem. 2016, 59, 8955.
During the development of our methodology, another 18F-labeled SV2A radiotracer with affinity comparable to that of UCB-H was disclosed by two different groups. In both cases, the tracer was labeled with fluorine-18 through aromatic nucleophilic substitution and required the preparation of a pre-functionalized precursors.
C. C. Constantinescu, C. Tresse, M. Zheng, A. Gouasmat, V. M. Caroll, L. Mistico, D. Alagille, C. M. Sandiego, C. Papin, K. Marek, J. P. Seibyl, G. D. Tamagnan, O. Barret, Mol. Imaging Biol. 2019, https://doi.org/10.1007/s11307-018-1260-5,
S. Li, Z. Cai, X. Wu, D. Holden, R. Pracitto, M. Kapinos, H. Gao, D. Labaree, N. Nabulsi, R. E. Carson, Y. Huang, ACS Chem. Neurosci. 2018, https://doi.org/10.1021/acschemneuro.8b00526.
For recent publications on fluorine-18 photochemistry, see:
M. B. Nodwell, H. Yang, M. Colovic, Z. Yuan, H. Merkens, R. E. Martin, F. Bénard, P. Schaffer, R. Britton, J. Am. Chem. Soc. 2017, 139, 3595;
Z. Yuan, M. B. Nodwell, H. Yang, N. Malik, H. Merkens, F. Bénard, R. E. Martin, P. Schaffer, R. Britton, Angew. Chem. Int. Ed. 2018, 57, 12733;
Angew. Chem. 2018, 130, 12915;
W. Chen, Z. Huang, N. E. S. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. A. Nicewicz, Z. Li, Science 2019, 364, 1170.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.