Angewandte manmmonn Chemie

Supporting Information

Late-Stage ${ }^{18} \mathbf{F}$-Difluoromethyl Labeling of \mathbf{N}-Heteroaromatics with High Molar Activity for PET Imaging
Laura Trump, Agostinho Lemos, Bénédicte Lallemand, Patrick Pasau, Joël Mercier, Christian Lemaire, André Luxen,* and Christophe Genicot*

anie_201907488_sm_miscellaneous_information.pdf
Table of Contents

1. Experimental procedures and analytical data S-4
a. General Information S-4
b. Synthesis of 3 S-5
c. Difluoromethylation S-6
i. General procedures S-6
ii. Gradients used for Semi prep purification S-7
iii. Scope S-11
d. Synthesis of the different precursors S-25
i. Synthesis of moxonidine analogue 36 S-25
ii. Synthesis of SV2A-PET (39) S-26
2. Radioactive Chemistry S-26
a. Generality S-26
b. Automated radiosynthesis of $\left[{ }^{18} \mathrm{~F}\right] 3$ S-28
c. Optimization of the labeling and oxidative steps S-29
d. Isolation and determination of molar activity of the sulfone $\left[{ }^{18} \mathrm{~F}\right] 3$ S-32
e. Optimization of the photochemical reaction S-33
f. Isolation and Molar activity of CHF^{18} FAcyclovir $\left[{ }^{18} \mathrm{~F}\right] 5$ S-37
g. Mechanistic studies S-38
h. General procedure for ${ }^{18} \mathrm{~F}$-difluoromethylation S-38
i. Scope S-39
3. Comparison batch fluorine-19/flow fluorine-18 conditions S-79
a. General procedure for batch fluorine-19 conditions S-79
b. Results S-80
4. References S-82
5. NMR spectra S-82
a. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 1 S-83
b. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 2 S-87
c. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 3 S-91
d. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 5 S-95
e. ${ }^{1} \mathrm{H}$, cosy, NOE, ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 6 S-98
f. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 7 a S-104
g. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 7 b S-108
h. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 7 c S-112
i. ${ }^{1} \mathrm{H}$, cosy, ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 8 a S-117
j. ${ }^{1} \mathrm{H}$, cosy ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 8 b S-122
k. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 9 a S-127
I. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 9 b S-130
m. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 10 S-134
n. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 11 S-138
o. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 12 S-142
p. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 13 S-146
q. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 14 S-151
r. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 15 S-155
s. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 16 S-159
t. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 17 S-163
u. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 18 S-167
v. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 19 S-171
w. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 20 S-174
x. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 21 S-177
y. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 22 S-182
z. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 23 S-186
aa. ${ }^{1} \mathrm{H}, \mathrm{HSQC}, \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 24 a S-191
bb. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 24 b S-196
cc. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 25 S-200
dd. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 26 S-204
ee. ${ }^{1} \mathrm{H}, \mathrm{HSQC} / \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 27 S-208
ff. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 28 S-213
gg. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 29 S-217
hh. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 30 S-221
ii. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 31 a S-225
jj. ${ }^{1} \mathrm{H}, \mathrm{HSCQ}, \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 31 b S-229
kk. ${ }^{1} \mathrm{H}, \mathrm{HSCQ}, \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 31c. S-234
II. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 35 S-238
mm . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 36 S-241
nn. $\quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 39 S-244

1. Experimental procedures and analytical data
 a. General Information

All reagents purchased from commercial sources were used as received. Technical solvents were bought from VWR international and used as received.

Flow reactions were performed on a R-series Vapourtec system, using a LED photoreactor ($450 \mathrm{~nm}, 24 \mathrm{~W}, 10 \mathrm{~mL}$ coil reactor with FEP tubing).

UPLC analyses were run on a Waters system (Acquity UPLC ${ }^{\circledR}$ diode array detector (190-400 nm) controlled by the Empower software) and were performed using an ACQUITY UPLC® BEH C18 column ($1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$), at $0.5 \mathrm{~mL} / \mathrm{min}$ and $45^{\circ} \mathrm{C}$. Thin layer chromatography (TLC) analyses were performed on silica gel Polygram ${ }^{\circledR}$ SIL G/UV ${ }_{254}$ pre-coated TLC-sheets.

Semi preparative (Semi-PREP) purifications were performed using SQD Waters single quadrupole mass spectrometer. This spectrometer is equipped with an ESI source, Waters 2535 quaternary pump coupled with 2767 sample Manager and with diode array detector (210 to 400 nm .) The column used is a Waters Sunfire ODB MS C18 column ($5 \mu \mathrm{~m}, 30 \times 50 \mathrm{~mm}$) for acidic purification and a Waters XBridge OBD MS C18 column ($5 \mu \mathrm{~m}, 30 \times 50 \mathrm{~mm}$) for basic purification.

Super Fluid Critical (SFC) purifications were performed using PREP600 system from Pic Solution equipped with a diode array detector (220 nm). Columns used are GS-NO2 ($10 \mu \mathrm{~m}$, $50 \times 229 \mathrm{~mm}$) and LuxCell4 ($20 \mu \mathrm{~m}, 50 \times 291$).

NMR spectra were recorded on a BRUKER AVANCE III Ultrashield Nanobay 400 MHz NMR Spectrometer and on a BRUKER AVANCE III HD Ascend 500 MHz NMR Spectrometer fitted with a 5 mm Prodigy BBO 500 S 1 cryoprobe. The compounds were analyzed in d_{6}-DMSO solution at a probe temperature of 300 K . Chemical shifts are given in ppm downfield from TMS (tetramethylsilane) as internal standard. For ${ }^{19} \mathrm{~F}$ NMR, chemical shifts are given in ppm downfield from TFA (trifluoroacetic acid, $\delta-76.50$) as internal standard. The NMR multiplicity signals are reported as $s=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet, $b r=$ broad, or combinations of thereof. Coupling constants J are quoted in Hz and reported to the nearest 1 Hz.

HRMS were obtained using a SYNAPT G2-SI Waters Q-TOF mass spectrometer. This spectrometer is equipped with an ESI source and a Waters Acquity H-class UPLC with diode array detector (210 to 400 nm .) An Acquity UPLC HSS T3 C18 column ($1.8 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$) was used.

b. Synthesis of 3

2-((bromofluoromethyl)thio)benzo[d]thiazole (1)

A solution of $\mathrm{KOH}\left(1.68 \mathrm{~g}, 30.0 \mathrm{mmol}, 10\right.$ equiv.) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was prepared and placed in an ice bath. Then, a solution of 2-mercaptobenzothiazole ($32,0.50 \mathrm{~g} 3.0 \mathrm{mmol}$, 1.0 equiv.) in THF (5 mL) was added and, after 10 min , the cold bath was removed. The reaction mixture was stirred at room temperature for 20 min . Dibromofluoromethane ($0.380 \mathrm{~mL}, 4.8 \mathrm{mmol}, 1.6$ equiv.) was then slowly added to the reaction mixture at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$. After 2 h , the crude mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the aqueous phase was extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification was performed on silica gel chromatography using hexane/ethyl acetate (gradient: starting from 100% hexane until 10% of ethyl acetate in hexane) to afford compound $\mathbf{1}$ ($0.13 \mathrm{~g}, 0.47 \mathrm{mmol}$, yield $=16 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.47\left(\mathrm{~d}, J_{H F}=56 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.15\left(\mathrm{~d}, J_{H H}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.06$ (d, JHH $=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (t, $\left.J_{H H}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51\left(\mathrm{t}, J_{H H}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13}$ C NMR (126 MHz , d_{6}-DMSO): δ 199.47, 152.08, 135.76, 126.76, 125.74, 122.43, 122.08, 90.55 (d, J J $\quad=295 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}+\mathrm{TFA}$): $\delta-105.51\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HF}}=54 \mathrm{~Hz}, 1 \mathrm{~F}\right)$;
HRMS (m/z): [M+H]+ calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NFSBr}, 277.9106$; found, 277.0109.

2-(difluoromethylsulfanyl)-1,3-benzothiazole (2)

2

2-(difluoromethylsulfanyl)-1,3-benzothiazole $\mathbf{2}$ was commercially purchased.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.16\left(\mathrm{~d}, J_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.06\left(\mathrm{~d}, J_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99(\mathrm{t}$, $\left.J_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{t}, \mathrm{J}_{H H}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52\left(\mathrm{t}, \mathrm{J}_{H H}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 155.94,152.28,135.95,126.79,125.83,122.46,122.07$, 120.28 (t, J JF = 275 Hz);
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-94.40$ (d, $J_{F H}=54 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): [M+H]+ calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NF}_{2} \mathrm{~S}_{2}, 217.9910$; found, 217.9910.

2-((Difluoromethyl)sulfonyl)benzo[d]thiazole (3)

To a round-bottom flask containing 2-((difluoromethyl)thio)benzo[d]thiazole (2, $0.2 \mathrm{~g}, 1.0$ $\mathrm{mmol})$, were added $\mathrm{MeCN}(0.5 \mathrm{~mL}), \mathrm{CCl}_{4}(0.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}), \mathrm{NaIO}_{4}(1.07 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(3.1 \mathrm{mg}, 15 \mu \mathrm{~mol})$. The resulting reaction mixture was stirred at room temperature for 2 h . After completion of the reaction, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the aqueous layer was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$).

The combined organic layers were washed with saturated aqueous solution of NaHCO_{3}, and subsequently dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. The crude was purified by column chromatography (silica gel, n-hexane/ethyl acetate $=90: 10$) to afford compound 3 ($0.17 \mathrm{~g}, 0.67 \mathrm{mmol}, 67 \%$ yield) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.44$ (m, 2H), 7.82 (m, 2H), 7.73 (t, $J_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): δ 159.01, 152.41, 137.49, 129.16, 128.55, 125.53, 123.74, 114.97 (t, $J_{C F}=282 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-123.97$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NF}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, 249.9808$; found, 249.9804.

c. Difluoromethylation

i. General procedures

General procedure A : Flow pseudo PET conditions

A solution of 2-((Difluoromethyl)sulfonyl)benzo[d]thiazole 3 ($30 \mathrm{mg}, 0.120 \mathrm{mmol}$), the substrate ($1.20 \mathrm{mmol}, 10$ equiv.) and $\left[\mathrm{Ir}(\mathrm{ppy})_{3}\right](4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in DMSO (2.4 mL) was prepared. Using the vapourtec flow system (Figure S1), the solution was injected in a 2 mL loop and pumped with cyclohexane as a solvent at a flow rate of $0.25 \mathrm{~mL} / \mathrm{min}$. The mixture passed through a flow photochemical reactor ($10 \mathrm{~mL}, 24 \mathrm{~W}, 450 \mathrm{~nm}$) at $55^{\circ} \mathrm{C}$. After completion of the residence time, the crude material was collected, and the segmented flow of DMSO was filtered and directly injected in a Semi-Prep HPLC/MS system for purification. The desired product was finally analyzed by NMR and HRMS.

Figure S1 : Photochemistry flow instrument used from Vapourtec

General procedure B : Baran Conditions ${ }^{1}$

A solution of the substrate (0.40 mmol), $\mathrm{Zn}\left(\mathrm{SO}_{2} \mathrm{CHF}_{2}\right)_{2}(250 \mathrm{mg}, 0.80 \mathrm{mmol}$, 2 equiv.) and TFA ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv.) in DMSO (1.5 mL) was prepared. Then, tBuOOH ($360 \mu \mathrm{~L}$, 5.5 M in nonane, $2 \mathrm{mmol}, 5$ equiv.) was added dropwise, under vigorous stirring at rt for 5 h to 24h. The crude material was purified by Semi-Prep HPLC/MS and the recovered product analyzed by NMR and HRMS.

ii. Gradients used for Semi prep purification

Purification Eluents:

Solvent A: $\mathrm{H}_{2} \mathrm{O}$ (100\%)
Solvent B: MeCN (100\%)
Solvent C: $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}(50 / 50)$, TFA + 2\% (pH ~2).
Solvent D: $\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{HCO}_{3} 100 \mathrm{mM}+500 \mu \mathrm{~L} / \mathrm{L} \mathrm{NH} 44 \mathrm{OH}, \quad(\mathrm{pH} \sim 8.5)$.
HPLC flow rate : $35 \mathrm{~mL} / \mathrm{min}$ to $45 \mathrm{~mL} / \mathrm{min}$, injection volume : $990 \mu \mathrm{~L}$.

Gradient 1: Acidic, classic

Time $(\mathbf{m i n})$	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	C $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
9	0	90	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 2: Acidic, isocratic 95/5 (water/acetonitrile)

Time (min)	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	\mathbf{C} $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	90	0	10	35
9	90	0	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 3: Acidic, gradient 95/5 to 60/40 (water/acetonitrile)

Time (min)	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	\mathbf{C} $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	90	0	10	35
9	55	35	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 4: Acidic, gradient 80/20 to 70/30 (water/acetonitrile)

Time (min)	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	\mathbf{C} $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	75	15	10	35
9	65	25	10	35
9.1	0	90	10	45

Gradient 5: Acidic, gradient 85/15 to 75/25 (water/acetonitrile)

Time $(\mathbf{m i n})$	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	C $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	80	10	10	35
9	70	20	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 6: Acidic, gradient 55/45 to 35/65 (water/acetonitrile)

Time $(\mathbf{m i n})$	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	C $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	50	40	10	35
9	30	60	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 7: Acidic, gradient 99/1 to 90/10 (water/acetonitrile)

Time (min)	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	C $(\%)$	Flow $(\mathbf{m L} / \mathrm{min})$
0	98	0	2	35
0.5	98	0	2	35
0.6	98	0	2	35
9	85	5	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 8: Basic, classic

Time $(\mathbf{m i n})$	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	$\mathbf{D}(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
9	0	90	10	35
9.1	0	90	10	45

Gradient 9: Basic, gradient 60/40 to 40/60 (water/acetonitrile)

Time $(\mathbf{m i n})$	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	C $(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	55	35	10	35
9	45	45	10	35
9.1	0	90	10	45
12	0	90	10	45

Gradient 11: Basic, gradient $95 / 5$ to $55 / 45$ (water/acetonitrile)

Time (min)	$\mathbf{A}(\%)$	$\mathbf{B}(\%)$	C (\%)	Flow $(\mathbf{m L} / \mathbf{m i n})$
0	90	0	10	35
0.5	90	0	10	35
0.6	90	0	10	35
9	50	40	10	35
9.1	0	90	10	45
12	0	90	10	45

HRMS Eluent:
Solvent C: $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}(95 / 5)+$ Formic acid $(750 \mu \mathrm{~L} / \mathrm{L})$
Solvent D: $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}(5 / 95)+$ Formic acid $(500 \mu \mathrm{~L} / \mathrm{L})$
$\mathrm{pH} \sim 3$

Time (min)	$\mathbf{C}(\%)$	$\mathbf{D}(\%)$	Flow $(\mathbf{m L} / \mathbf{m i n})$
$\mathbf{0}$	98	2	0.8
$\mathbf{0 . 3}$	98	2	0.8
$\mathbf{3}$	5	95	0.8
$\mathbf{4}$	5	95	0.8
$\mathbf{4 . 1}$	98	2	0.8
$\mathbf{5 . 1}$	98	2	0.8

iii. Scope

2-amino-8-(difluoromethyl)-7-(2-hydroxyethoxymethyl)-9H-purin-6-ol / CHF 2 -Acyclovir

(5)

The general procedure A using acyclovir (0.120 mmol) yielded after purification (acidic mode, gradient 2) to 5.0 mg (15\%) of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 10,82(\mathrm{~s}, 1 \mathrm{H}), 7.14\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 6,72\left(\mathrm{~s}\right.$ broad, NH_{2}, 2H), 5,46 (s, 2H), 3,40 (m, 4H);
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 156.0,154.1,152.2,138.44\left(\mathrm{t}, \mathrm{J}_{\text {CF }}=27 \mathrm{~Hz}\right.$), 115.53, 109.45 (t, J J $F=236 \mathrm{~Hz}$), 71.67, 70.62, 59.79;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}+\mathrm{TFA}$): $\delta-118.14$ (d, $\left.\mathrm{J}_{F H}=52 \mathrm{~Hz}, 2 \mathrm{~F}\right)$;
HRMS (m/z): [M+H]+ calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~F}_{2}, 276.0920$; found, 276.0914.

4-(difluoromethyl)-1H-indole (6)

6
The general procedure B using indole (1 mmol) yielded after purification (basic mode, gradient $9)$ to 1.5 mg (1%) of the title compound as a purple oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 11.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.58\left(\mathrm{~d}, \mathrm{~J}_{H H}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48\left(\mathrm{t}, \mathrm{J}_{H H}=\right.$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}}=56 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.60$ (s broad, 1H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 142.7,134.7,131.66,123.76,121.25\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=6 \mathrm{~Hz}\right.$), 121.10, 120.91, 117.45, 113.54 (t, JCF = 236 Hz);
${ }^{19}$ F NMR, (400 MHz, d ${ }_{6}$-DMSO + TFA): $\delta-111.48$ (d, $\left.J_{F H}=55 \mathrm{~Hz}, 2 \mathrm{~F}\right)$;
HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NF}_{2}, 168.0625$; found, 168.0632 .

2-(difluoromethyl)-1H-benzimidazole (7a), 4-(difluoromethyl)-1H-benzimidazole (7b) and 5-(difluoromethyl)-1H-benzimidazole (7c)

The general procedure A using benzimidazole (0.15 mmol) yielded after purification (acidic mode, gradient 2) to 1.5 mg of $7 \mathbf{a}(6 \%), 0.9 \mathrm{mg}$ of $\mathbf{7 b}(2.5 \%)$ and 0.5 mg of $7 \mathbf{c}(1.5 \%)$ as colorless solids.

7a
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 7.66$ (dd, $J_{H H}=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (dd, $J_{H H}=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (t, $J_{H F}=53 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 145.49\left(\mathrm{t}, J_{C F}=28 \mathrm{~Hz}\right), 123.24,116.1,109.9\left(\mathrm{t}, J_{C F}=236\right.$ Hz);
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}+\mathrm{TFA}$): $\delta-117.08$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~F}_{2}, 169.0577$; found, 169.0582.

7b
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.92\left(\mathrm{~d}, J_{H H}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62\left(\mathrm{~d}, J_{H H}=8.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51\left(\mathrm{~d}, J_{H H}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.44\left(\mathrm{t}, J_{H F}=55 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 136.30,126.69,124.67\left(\mathrm{t}, J_{C F}=22 \mathrm{~Hz}\right), 124.07\left(\mathrm{t}, J_{C F}=3\right.$ $\mathrm{Hz}), 116.98\left(\mathrm{t}, J_{C F}=7.5 \mathrm{~Hz}\right), 116.02\left(\mathrm{t}, J_{C F}=236 \mathrm{~Hz}\right), 114.27,99.4$;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}+$ TFA): $\delta-112.86$ (d, J = $55 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~F}_{2}$, 169.0577; found, 169.0580.

7c
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.81\left(\mathrm{~d}, J_{H H}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53$ (d, $J_{H H}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16\left(\mathrm{t}, J_{H F}=55 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 157.97,157.71,143.32,139.72,129.14\left(\mathrm{t}, J_{C F}=3 \mathrm{~Hz}\right.$), 120.53, 115.46, $115.32\left(\mathrm{t}, \mathrm{J}_{C F}=236 \mathrm{~Hz}\right.$);
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA) : $\delta-108.94$ (d, $J_{F H}=56 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~F}_{2}$, 169.0577; found, 169.0578.

2-(difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine (8a) and 6-(difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine (8b)

8a

8b

The general procedure B using 4-methyl-1H-pyrrolo[2,3-b]pyridine (0.40 mmol) yielded after purification (acidic mode, gradient 1) to $2.7 \mathrm{mg}(6 \%)$ of $8 \mathbf{a}$ and 0.3 mg of $\mathbf{8 b}(0.5 \%)$ as yellowish solids.

8a
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 8.25\left(\mathrm{~d}, J_{H H}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23\left(\mathrm{t}, J_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04(\mathrm{~d}$, $\left.J_{H H}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.93\left(\mathrm{t}, \mathrm{J}_{H H}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.57(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 146.80,143.38,142.58,130.72\left(\mathrm{t}, \mathrm{J}_{C F}=25 \mathrm{~Hz}\right.$), 119.82, $116.92,110.73\left(\mathrm{t}, \mathrm{J}_{\text {CF }}=234 \mathrm{~Hz}\right.$), $100.14\left(\mathrm{t}, J_{C F}=7 \mathrm{~Hz}\right), 18.13$;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}+\mathrm{TFA}$): $\delta-111.95\left(\mathrm{~d}, \mathrm{~J}_{F H}=55 \mathrm{~Hz}, 2 \mathrm{~F}\right)$;
HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{~F}_{2}$, 183.0734; found, 183.0735.

8b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 11.9$ (s broad, 1 H), 7.6 ($\mathrm{t}, \mathrm{J}_{H H}=3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.2(\mathrm{~s}, 1 \mathrm{H}), 6.91$ (t, JHF $=55 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 147.18,144.88$ (t, $J_{C F}=24 \mathrm{~Hz}$), 139.96, 127.45, 121.48, 114.97 (t, $\left.J_{C F}=240 \mathrm{~Hz}\right), 112.15,98.76$, 18.16;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-113.25$ (d, $J_{F H}=55 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{~F}_{2}$, 183.0734; found, 183.0735.

4-(difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine (9a) and 3-(difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine (9b)

9a

9b

The general procedure A using 6-methyl-1H-pyrazolo[3,4-b]pyridine (0.30 mmol) yielded after purification (acidic mode, gradient 3) to $2.1 \mathrm{mg}(4 \%)$ of 9 a as a colorless solid and 1.3 mg of 9b (3\%) as a yellowish solid.

9a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.5(\mathrm{~s}, 1 \mathrm{H}), 7.38\left(\mathrm{t}, J_{H F}=55 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{~s}$, 3H);
${ }^{13} \mathrm{C}$ NMR (126 MHz, d_{6}-DMSO): $\delta 158.53,152.33,135.03\left(\mathrm{t}, \mathrm{J}_{\text {CF }}=24 \mathrm{~Hz}\right), 131.38$,), 113.94
($\mathrm{t}, J_{C F}=7 \mathrm{~Hz}$), $113.88\left(\mathrm{t}, \mathrm{J}_{C F}=237 \mathrm{~Hz}\right.$), 111.84, 24.41;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-112.62$ ($\mathrm{d}, \mathrm{J}_{\mathrm{FH}}=56 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): [M+H]+ calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~F}_{2}$, 184.0686; found, 184.0688.

9b
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.17\left(\mathrm{~d}, J_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.3\left(\mathrm{t}, J_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21\left(\mathrm{~d}, J_{H H}\right.$ $=8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (s, 3H);
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 159.26,152.13,137.65\left(\mathrm{t}, J_{C F}=29 \mathrm{~Hz}\right.$), 129.08, 118.63, 114.29, $112.45\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=230 \mathrm{~Hz}\right), 108.83$, 24.47;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-115.48\left(\mathrm{~d}, J_{F H}=55 \mathrm{~Hz}, 2 \mathrm{~F}\right)$;
HRMS (m / z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~F}_{2}$, 184.0686; found, 184.0687.

2-[3,5-dichloro-2-(difluoromethyl)-4-pyridyl]-N,N-dimethyl-acetamide (10)

10

The general procedure B using 2-(3,5-dichloro-4-pyridyl)-N,N-dimethyl-acetamide (0.25 mmol) yielded after purification (acidic mode, gradient 1) to $7.4 \mathrm{mg}(10 \%)$ of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 7.23\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=56 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}$, 3H), 2,86 (s, 3H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 166.02,146.49,146.14\left(\mathrm{t}, J_{C F}=23 \mathrm{~Hz}\right.$), 144.61, 135.01, 131.49, 112.00 (t, JCF $=240 \mathrm{~Hz}$), 36.89, 35.58, 35.01;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-119.44$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m / z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OF}_{2} \mathrm{Cl}_{2}, 283.0216$; found, 283.0216.

11
The general procedure B using 3-chloro-6,7-dihydro-5H-cyclopenta[c]pyridine-4-carbonitrile (0.40 mmol) yielded after purification (acidic mode, gradient 6) to 6.0 mg (7%) of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 7.07\left(\mathrm{t}, \mathrm{J}_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.13(\mathrm{~m}, 4 \mathrm{H}), 2.2\left(\mathrm{q}, \mathrm{J}_{H H}=8 \mathrm{~Hz}\right.$, 2H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 165.94,148.72\left(\mathrm{t}, \mathrm{J}_{\text {CF }}=26 \mathrm{~Hz}\right.$), 147.96, 138.75, 114.6, 112.71 (t, $J_{\text {CF }}=240 \mathrm{~Hz}$), 108.30, 32.46, 29.17, 24.3;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): -120.72 (d, JFH $=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~F}_{2} \mathrm{Cl}, 229.0344$; found, 229.0342.

2-chloro-4-(difluoromethyl)-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile (12)

12
The general procedure B using 2-chloro-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile $(0.40 \mathrm{mmol})$ yielded after purification (acidic mode, gradient 6) to $7.5 \mathrm{mg}(8 \%)$ of the title compound as a brown solid.
${ }^{1}{ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 7.29\left(\mathrm{t}, \mathrm{J}_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.08(\mathrm{~m}, 4 \mathrm{H}), 2.12\left(\mathrm{q}, \mathrm{J}_{H H}=8 \mathrm{~Hz}\right.$, 2H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 173.46,151.38,141.10\left(\mathrm{t}, J_{C F}=24 \mathrm{~Hz}\right.$), $135.33\left(\mathrm{t}, J_{C F}=4\right.$ $\mathrm{Hz}), 113.75,111.84\left(\mathrm{t}, J_{C F}=240 \mathrm{~Hz}\right), 103.41\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=4 \mathrm{~Hz}\right), 33.88,28.54,22.20$;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-117.27$ (dt, $J_{F H}=54 \mathrm{~Hz}, J_{F H}{ }^{\prime}=2 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~F}_{2} \mathrm{Cl}, 229.0344$; found, 229.0343.
4-(difluoromethyl)-2-tetrahydropyran-4-yl-pyrimidin-5-amine (13)

13
The general procedure B using 2-tetrahydropyran-4-ylpyrimidin-5-amine (0.40 mmol) yielded after purification (acidic mode, gradient 5) to $7.4 \mathrm{mg}(7 \%)$ of the title compound as a colorless solid.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.35$ (s, 1H), 6.93 (t, $\left.J_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90\left(\mathrm{~d}, J_{H H}=12 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 3.42\left(\mathrm{t}, \mathrm{J}_{H H}=12 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.91(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 159.27,146.89,138.21\left(\mathrm{t}, J_{C F}=23 \mathrm{~Hz}\right.$), 137.84, $113.49(\mathrm{t}$, $J_{\text {CF }}=236 \mathrm{~Hz}$), 66.80, 42.02, 31.32;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-112.21$ (d, $J_{F H}=54 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OF}_{2}, 230.1105$; found, 231.1105.
4-chloro-2-(difluoromethyl)-6-methoxy-pyrimidin-5-amine (14)

14
The general procedure B using 4-chloro-6-methoxy-pyrimidin-5-amine (0.40 mmol) yielded after purification (acidic mode, gradient 1) to 8 mg (10%) of the title compound as a white solid.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 6.69$ (t, $\left.\mathrm{J}_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{{ }^{13} \mathrm{C}}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 157.39$, $143.91\left(\mathrm{t}, \mathrm{J}_{C F}=26 \mathrm{~Hz}\right.$), 136.54, 128.96, $11.90\left(\mathrm{t}, \mathrm{J}_{C F}\right.$ $=245 \mathrm{~Hz}$), 54.76;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-118.75$ (d, $J_{F H}=52 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OF}_{2} \mathrm{Cl}, 210.0246$; found, 210.0249.
4-(difluoromethyl)-5-methyl-pyrimidin-2-amine (15)

15
The general procedure A using 5-methylpyrimidin-2-amine (0.15 mmol) yielded after purification (basic mode, gradient 10) to $6.3 \mathrm{mg}(26 \%)$ of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.25$ (s, 1H), 6.77 (t, $\mathrm{J}_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}$), 6.75 (s broad, 2H), $2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 162.10,161.49,156.74\left(\mathrm{t}, J_{C F}=23 \mathrm{~Hz}\right), 115.15$, 113.74 (t, JCF = 240 Hz), 12.61;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-130.32$ (d, $\mathrm{J}_{\mathrm{FH}}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~F}_{2}$, 160.0686; found, 160.0689.
4-(difluoromethyl)-2-methyl-6,8-dihydro-5H-pyrido[2,3-d]pyrimidin-7-one (16)

16

The general procedure B using 2-methyl-6,8-dihydro-5H-pyrido[2,3-d]pyrimidin-7-one (0.40 mmol) yielded after purification (acidic mode, gradient 5) to 10.8 mg (13%) of the title compound as a colorless solid.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 11.07$ (s, 1H), 6.99 (t, $J_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (t, $\mathrm{J}_{H H}=8 \mathrm{~Hz}$, 2H), 2.59 (t, JHH = $8 \mathrm{~Hz}, 2 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 170.92,165.43,159.58,154.19\left(\mathrm{t}, J_{C F}=24 \mathrm{~Hz}\right), 113.22(\mathrm{t}$, $J_{\text {CF }}=236 \mathrm{~Hz}$), 111.25, 29.28, 24.94, 18.07;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-119.75$ (d, $J_{F H}=54 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OF}_{2}$, 214.0792; found, 214.0794.

5-(difluoromethyl)-1H-pyrimido[4,5-d]pyridazine-2,4-dione (17)

17
The general procedure B using 2-methyl-6,8-dihydro-5H-pyrido[2,3-d]pyrimidin-7-one (0.40 mmol) yielded after purification (acidic mode, gradient 2) to 14 mg (20%) of the title compound as a yellowish solid.
${ }^{1}{ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 12.1(\mathrm{~s}, 1 \mathrm{H}), 11.2(\mathrm{~s}$ broad, 1 H$), 9.42(\mathrm{~s}, 1 \mathrm{H}), 7.54\left(\mathrm{t}, \mathrm{J}_{H F}=\right.$ $53 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 160.72,150.22,148.24,143.17\left(\mathrm{t}, J_{C F}=23 \mathrm{~Hz}\right.$), 137.20, 111.86, 110.43 (t, JCF = 238 Hz);
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-122.68$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{2}$, 215.0381; found, 215.0382.

Methyl 2-[3,5-dichloro-6-(difluoromethyl)-1-tetrahydropyran-2-yl-pyrazolo[3,4-b]pyridin-4-yl]acetate (18)

18
The general procedure A using methyl 2-(3,5-dichloro-1-tetrahydropyran-2-yl-pyrazolo[3,4-b]pyridin-4-yl)acetate ($0.48 \mathrm{mmol}, 8$ equiv.) yielded after purification (basic mode, gradient 8) to $5.0 \mathrm{mg}(3 \%)$ of the title compound as a colorless solid.
${ }^{1}{ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.37\left(\mathrm{t}, J_{H F}=53 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04\left(\mathrm{dd}, J_{H H}=10 \mathrm{~Hz}, \mathrm{~J}^{\prime}{ }_{H H}=2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.4(\mathrm{~s}, 2 \mathrm{H}), 3.95\left(\mathrm{~d}, \mathrm{~J}_{H H}=10 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.0(\mathrm{~m}$, 2H), 1.8 (m, 1H), 1.58 (m, 2H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 168.47,148.15\left(\mathrm{t}, J_{C F}=23 \mathrm{~Hz}\right.$), 147.20, 138.46, 131.37, 124.02, 113.93, $111.92\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=240 \mathrm{~Hz}\right), 81.90,67.22,52.61,33.62,28.58,24.50,21.99$;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-120.84$ (dd, $\left.J_{F H}=53 \mathrm{~Hz}, J_{F H}=29 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{Cl}_{2}$, 394.0537; found, 394.0534.

4-(difluoromethyl)-6-methyl-2-methylsulfanyl-8H-pyrimido[4,5-d]pyrimidine-5,7-dione

 (19)

19
The general procedure B using 6-methyl-2-methylsulfanyl-8H-pyrimido[4,5-d]pyrimidine-5,7dione (0.40 mmol) yielded after purification (acidic mode, gradient 1) to $8.5 \mathrm{mg}(7.7 \%)$ of the title compound as a yellow solid.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO): $\delta 12.57(\mathrm{~s}, 1 \mathrm{H}), 7.68\left(\mathrm{t}, J_{H F}=53 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.60$ (s, 3H);
${ }^{13} C$ NMR (126 MHz, d_{6}-DMSO) $\delta 175.99,160.17,159.23\left(\mathrm{t}, J_{C F}=22 \mathrm{~Hz}\right.$), 157.02, 150.06, $108.93\left(\mathrm{t}, J_{C F}=241 \mathrm{~Hz}\right), 101.61\left(\mathrm{t}, J_{C F}=3 \mathrm{~Hz}\right), 27.18,13.77$;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-125.60$ (d, $\left.J_{F H}=53 \mathrm{~Hz}, 2 F\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{~S}$, 275.0414; found, 275.0417.
8-(difluoromethyl)-1,3,7-trimethyl-purine-2,6-dione / CHF_{2}-caffeine (20)

The general procedure A using caffeine ($0.30 \mathrm{mmol}, 5$ equiv.) in DMF yielded after purification (acidic mode, gradient 2) to 2.5 mg (4\%) of the title compound as a colorless solid.
${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO): $\delta 7.35\left(\mathrm{t}, J_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}$, 3H);
${ }^{13} C$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 154.85,150.85,146.55,142.6\left(\mathrm{t}, J_{C F}=27 \mathrm{~Hz}\right), 108.52$, 108.47 (t, $\left.J_{C F}=236 \mathrm{~Hz}\right), 32.42,29.48,27.69$;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-119.98$ (d, $\left.J_{F H}=52 \mathrm{~Hz}, 2 F\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{2}, 245.0850$; found, 245.0854.
Data in accordance with litterature ${ }^{[1,2]}$

8-(difluoromethyl)-1,3-dimethyl-7H-purine-2,6-dione / CHF_{2}-theophylline (21)

The general procedure A, using theophylline ($0.30 \mathrm{mmol}, 5$ equiv.) in DMF yielded after purification (acidic mode, gradient 4) to 2.5 mg (5\%) of the title compound as a colorless solid.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}$): $\delta 7.13\left(\mathrm{t}, \mathrm{J}_{H F}=56 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{{ }^{13} \mathrm{C}}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 154.58,151.07,147.14,143.22\left(\mathrm{t}, J_{C F}=26 \mathrm{~Hz}\right)$, $108.66(\mathrm{t}$, $J_{\text {CF }}=236 \mathrm{~Hz}$), 108.17, 29.85, 27.87;
${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA) : $\delta-118.57$ (d, $\mathrm{J}_{F H}=52 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{2}$, 231.0694; found, 231.0697.
Data in accordance with litterature ${ }^{[1]}$

8-(difluoromethyl)-3,7-dimethyl-1-(5-oxohexyl)purine-2,6-dione / CHF_{2}-pentoxyfilline (22)

The general procedure B using pentoxyfilline (0.40 mmol) yielded after purification (acidic mode, gradient 1$)$ to $9 \mathrm{mg}(6.8 \%)$ of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.35\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.85\left(\mathrm{t}, \mathrm{J}_{H H}=7 \mathrm{~Hz}\right.$, 2H), 3.42 (s, 3H), 2.46 (t, JHH = $7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.07 (s, 3H), 1.56-1.40 (m, 4H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 208.20,154.64,150.55,146.60,142.70\left(\mathrm{t}, \mathrm{J}_{C F}=27 \mathrm{~Hz}\right.$), 108.48, 108.47 (t, JCF $=235 \mathrm{~Hz}$), 42.19, 40.33, 32.41, 29.73, 29.43, 26.88, 20.49;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-119.37$ (d, $\left.J_{F H}=52 \mathrm{~Hz}, 2 \mathrm{~F}\right)$;
HRMS (m/z): [M+H]+ calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{2}$, 329.1425; found, 329.1423.
Data in accordance with litterature ${ }^{[1],[2]}$

5-(difluoromethyl)-1,3-dimethyl-pyrimidine-2,4-dione/ CHF_{2}-1,3-dimethyl-uracil (23)

23
The general procedure A using dimethyl-uracil (0.40 mmol) yielded after purification (acidic mode, gradient 2) to $6.0 \mathrm{mg}(26 \%)$ of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 6.75\left(\mathrm{t}, \mathrm{J}_{H F}=56 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}$, 3H);
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 160.41,150.91,144.71,112.02\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=235 \mathrm{~Hz}\right), 105.01(\mathrm{t}$, $J_{\text {CF }}=23 \mathrm{~Hz}$), 36.81, 27.30;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-117.78$ ($\mathrm{d}, \mathrm{J}_{F H}=55 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}$, 191.0632; found, 191.0634.
Data in accordance with litterature ${ }^{[2]}$

6-amino-5-(difluoromethyl)-1H-pyrimidin-2-one and 6-amino-4-(difluoromethyl)-1H-pyrimidin-2-one / CHF_{2}-Cytosine (24)

24a

24b

The general procedure B using cytosine (0.40 mmol) yielded after purification (SFC mode, isocratic $\left.75 / 25 ; \mathrm{CO}_{2} / \mathrm{MeOH}\right)$ to $0.5 \mathrm{mg}(0.8 \%)$ of $\mathbf{2 4 a}$ and 1.3 mg of $\mathbf{2 4 b}(2.1 \%)$ as colorless solids.

24a
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.98$ (s, 1H), $6.85\left(\mathrm{t}, \mathrm{J}_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right.$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 160.3,152.1,146.5,113.1\left(\mathrm{t}, \mathrm{J}_{C F}=235 \mathrm{~Hz}\right.$), 98.9;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-115 ; 89$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): [M+H]+ calcd. for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{OF}_{2}, 162.0479$; found, 162.0481.
NB: As less than 1 mg of product was obtained, carbons assignments were determined by HSQC and HMBC analysis.
2 peaks at 9.48 and 8.48 ppm in the proton spectrum are observed, corresponding to the degradation of the difluoromethylated compound into the corresponding aldehyde.

${ }^{1} \mathrm{H}$ NMR (400 MHz, d_{6}-DMSO): $\delta 9.75$ (s, 1H), 8.79 (s, 1H), $6.87\left(\mathrm{t}, \mathrm{J}_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.24(\mathrm{~s}$, 1H);
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 160.52$, $149.29\left(\mathrm{t}, J_{C F}=25 \mathrm{~Hz}\right), 148.69,109.23\left(\mathrm{t}, \mathrm{J}_{C F}=241\right.$ Hz), $91.61\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=8 \mathrm{~Hz}\right)$;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-125.02$ (d, $\mathrm{J}_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{OF}_{2}, 162.0479$; found, 162.0485 .

8-(difluoromethyl)-9H-purin-6-amine / CHF_{2}-Adenine (25)

25
The general procedure B using adenine (0.40 mmol) yielded after purification (acidic mode, gradient 7) to $4.5 \mathrm{mg}(6 \%)$ of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right): ~ \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.31\left(\mathrm{t}, \mathrm{J}_{H F}=53 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 152.03,150.05,147.25,145.46\left(\mathrm{t}, J_{C F}=27 \mathrm{~Hz}\right), 117.52$, 109.16 (t, $J_{C F}=234 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-118.33$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{~N}_{5}, 186.0591$; found, 186.0593.
(1S)-5-(difluoromethyl)-1-[(3R,4S,5R)-3,4-dihydroxy-5-
(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione / CHF_{2}-uridine (26)

26
The general procedure B using uridine (0.40 mmol) yielded, after purification (acidic mode, gradient 7) to 2.5 mg (2.1%) of the title compound as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 6.68\left(\mathrm{t}, J_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77\left(\mathrm{~d}, J_{H H}=4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.04\left(\mathrm{t}, \mathrm{J}_{H H}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98\left(\mathrm{t}, \mathrm{J}_{H H}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 160.98\left(\mathrm{t}, J_{C F}=3 \mathrm{~Hz}\right.$), $150.25,141.10\left(\mathrm{t}, J_{C F}=7.5 \mathrm{~Hz}\right)$, $112.10\left(\mathrm{t}, J_{C F}=234 \mathrm{~Hz}\right), 107.53\left(\mathrm{t}, J_{C F}=23 \mathrm{~Hz}\right), 88.83,84.97,74.33,69.58,60.36$;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-117.91$ (dd, $\left.J_{F H}=40 \mathrm{~Hz}, J_{F H^{\prime}}=54 \mathrm{~Hz}, 2 F\right)$;
HRMS (m/z): [M-H] calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~F}_{2}$, 293.0585; found, 293.0590.
(1S)-4-amino-5-(difluoromethyl)-1-[(3R,4S,5R)-3,4-dihydroxy-5-
(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2-one / CHF_{2}-cytidine (27)

27
The general procedure B using cytidine (0.40 mmol) yielded after purification (SFC mode, isocratic $75 / 25 \mathrm{CO}_{2} / \mathrm{EtOH}$) to $0.5 \mathrm{mg}(1 \%)$ of the title compound as a colorless oil.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.5(\mathrm{~s}, 1 \mathrm{H}), 6.81\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=54 \mathrm{~Hz}\right), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.93$ (m, 2H), 3.91-3.86 (m, 1H), $3.72\left(\mathrm{~d}, J_{H H}=13 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.57\left(\mathrm{~d}, J_{H H}=13 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 160.3,152.9,142.9,112.5$ (t, $J_{C F}=222 \mathrm{~Hz}$), 89.3, 83.7, 74.0, 68.3, 59.5;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-115.44$ (dd, $\left.J_{H F}=54 \mathrm{~Hz}, J_{H F}=15 \mathrm{~Hz}, 2 F\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{2}$, 294.0802; found, 294.0897.
NB : The compound degrades easily, caution should be taken during the purification and the following evaporation.

As less than 1 mg of product was obtained, carbons assignments were determined by HSQC and HMBC analysis.
(3R,4S,5R)-2-[(9S)-6-amino-8-(difluoromethyl)purin-9-yl]-5-(hydroxymethyl) tetrahydrofuran-3,4-diol /CHF 2-Adenosine (28) $^{\text {(2) }}$

28
The general procedure B using adenosine (0.40 mmol) yielded after purification (acidic mode, gradient 7) to $4.2 \mathrm{mg}(3.3 \%)$ of the title compound as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.22$ (s, 1H), 8.20 (s, 2H), 7.41 (t, JHF $\left.=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97$ (d, $\left.J_{H H}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.87\left(\mathrm{dd}, J_{H H}=5 \mathrm{~Hz}, J_{H H^{\prime}}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20\left(\mathrm{dd}, J_{H H}=2 \mathrm{~Hz}, J_{H H^{\prime}}=5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.03 (m, 1H), $3.60(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 164.16,157.19,154.25,150.28,118.57,109.68\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=237\right.$ Hz), 89.11, 97.13, 72.71, 71.05, 62.23;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-115.1$ (dd, $J_{F H}=53 \mathrm{~Hz}, J_{F F}{ }^{\prime}=319 \mathrm{~Hz}, 1 \mathrm{~F}$), -118.6 (dd, $\mathrm{J}_{\mathrm{FH}}=53 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{FF}}{ }^{\prime}=319 \mathrm{~Hz}, 1 \mathrm{~F}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~F}_{2}, 318.1014$; found, 318.1017.
(9S)-2-amino-8-(difluoromethyl)-9-[(3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl]-1H-purin-6-one / CHF_{2}-Guanosine (29)

29
The general procedure B using guanosine (0.40 mmol) yielded after purification (acidic mode, gradient 7) to $5.2 \mathrm{mg}(4 \%)$ of the title compound as a colorless solid.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.26$ (t, $\left.\mathrm{J}_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.62(\mathrm{~s}, 2 \mathrm{H}), 5.82\left(\mathrm{~d}, \mathrm{~J}_{H H}=6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.40\left(\mathrm{~d}, \mathrm{~J}_{H H}=6 \mathrm{~Hz}\right), 5.1-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.90\left(\mathrm{q}, \mathrm{J}_{H H}=4\right.$ $\mathrm{Hz})$, 3.70-3.62 (m, 1H), 3.61-3.51 (m, 1H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 157.02,154.39,152.29,138.43\left(\mathrm{t}, J_{C F}=26 \mathrm{~Hz}\right), 116.49$, 109.51 ($\mathrm{t}, \mathrm{J}_{\text {CF }}=236 \mathrm{~Hz}$), 88.04, 85.98, 72.06, 70.38, 61.71;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}+\mathrm{TFA}$): $\delta-110.55$ (dd, $\left.J_{F H}=54 \mathrm{~Hz}, J_{F F}{ }^{\prime}=316 \mathrm{~Hz}, 1 \mathrm{~F}\right),-115.32$ (dd, $\left.\mathrm{J}_{\mathrm{FH}}=54 \mathrm{~Hz}, \mathrm{~J}_{F F^{\prime}}=316 \mathrm{~Hz}, 1 \mathrm{~F}\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~F}_{2}, 334.0963$; found, 334.0964.

4-chloro-2-(difluoromethyl)-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-pyrimidin-5amine / CHF_{2}-moxonidine (30)

30
The general procedure B using 4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-pyrimidin- 5 -amine (0.40 mmol) yielded after purification (acidic mode, gradient 4) to 7.2 mg (7.9%) of the title compound as a colorless solid.
${ }^{1}{ }^{1} H$ NMR ($\left.400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right): \delta 6.76\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}$, 4H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 163.80,158.07,149.58,148.55\left(\mathrm{t}, J_{C F}=25 \mathrm{~Hz}\right.$), 132.12, 111.87 (t, J JF $=240 \mathrm{~Hz}$), 54.52, 41.77;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-119.40\left(\mathrm{~d}, \mathrm{~J}_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OF}_{2} \mathrm{Cl}, 278.0620$; found, 278.0621.
(4R)-1-[[2-(difluoromethyl)-4-pyridyl]methyl]-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one (31a), (4R)-1-[[3-(difluoromethyl)-4-pyridyl]methyl]-4-(3,4,5-trifluorophenyl)pyrrolidin-2one (31b), (4R)-4-[2-(difluoromethyl)-3,4,5-trifluoro-phenyl]-1-(4-pyridylmethyl)pyrrolidin-2-one (31c)

31a

31b

31c

The general procedure A using (4R)-1-(4-pyridylmethyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2one (39) (0.30 mmol) yielded after purification (acidic mode, gradient 1 , then basic mode, gradient 8) to 5 mg (16\%) of 31a, $400 \mu \mathrm{~g}$ (1.5\%) of 31b and $250 \mu \mathrm{~g}$ of 31c (1\%) as colorless solids.

31a
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.65\left(\mathrm{~d}, J_{H H}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.46\left(\mathrm{~d}, \mathrm{~J}_{H H}=4.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.33$ (dd, $\left.J_{H H}=6.8 \mathrm{~Hz}, J^{\prime}{ }^{\prime} H=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.95\left(\mathrm{t}, J_{H F}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.61\left(\mathrm{~d}, J_{H H}=15 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.49\left(\mathrm{~d}, J_{H H}=15 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.76\left(\mathrm{dd}, J_{H H}=7 \mathrm{~Hz}, J_{H}^{\prime}=15 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.60$ (dd, $J_{H H}=7 \mathrm{~Hz}, \mathrm{~J}^{\prime}$ нн $=15 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 173.52,152.68\left(\mathrm{t}, J_{C F}=24 \mathrm{~Hz}\right.$), 150.61 (ddd, $J_{C F}=4 \mathrm{~Hz}$, J'CF $=10 \mathrm{~Hz}, J^{\prime \prime}{ }_{C F}=248 \mathrm{~Hz}$), 150.37, 148.55, 140.01 (m), 137.98 (td, $J_{C F}=16 \mathrm{~Hz}, J^{\prime}{ }_{C F}=248 \mathrm{~Hz}$), 124.96, $119.51\left(\mathrm{t}, J_{C F}=4 \mathrm{~Hz}\right), 114.19\left(\mathrm{t}, J_{C F}=238 \mathrm{~Hz}\right), 112.41\left(\mathrm{dd}, J_{C F}=4 \mathrm{~Hz}, J_{C F}=17 \mathrm{~Hz}\right)$, 53.50, 44.99, 37.73, 36.87;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-116.92$ (d, $J_{F H}=53 \mathrm{~Hz}, 2 \mathrm{~F}$), -136.72 (dd, $J_{F H}=8 \mathrm{~Hz}$, $\left.J_{F F}=22 \mathrm{~Hz}, 2 \mathrm{H}\right),-165.69\left(\mathrm{tt}, J_{F H}=8 \mathrm{~Hz}, J_{F F}=22 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}_{5}, 357.1026$; found, 357.1030.

31b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=54 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.72(\mathrm{~d}$, $\left.J_{H H}=15 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.52\left(\mathrm{~d}, J_{H H}=15 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68(\mathrm{~m}, 2 \mathrm{H}), 2.75\left(\mathrm{dd}, J_{H H}=8 \mathrm{~Hz}, J_{H H}=15 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.31\left(\mathrm{dd}, J_{H H}=8 \mathrm{~Hz}, J_{H H}=15 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}$ NMR (126 MHz, d_{6}-DMSO) $\delta 173.7$, 152.9, 147.6, 145.0, 136.9, 127.5, 123.0, 114.3, 112.6, 53.4, 42.0, 37.8, 36.9;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-115.66\left(\mathrm{~d}, J_{F H}=55 \mathrm{~Hz}, 2 \mathrm{~F}\right),-138.37$ (dd, $J_{F H}=9 \mathrm{~Hz}$, $\left.J_{F F}^{\prime}=21 \mathrm{~Hz}, 2 \mathrm{H}\right),-167.29\left(\mathrm{tt}, J_{F H}=7 \mathrm{~Hz}, J_{F F}=22 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}_{5}, 357.1026$; found, 357.1027.

31c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.54\left(\mathrm{~d}, \mathrm{~J}_{H H}=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}$, $\left.J_{H F}=52 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28\left(\mathrm{~d}, J_{H H}=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.52\left(\mathrm{~d}, J_{H H}=14 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.41\left(\mathrm{~d}, J_{H H}=14 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.09\left(\mathrm{t}, J_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62\left(\mathrm{t}, J_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.75\left(\mathrm{dd}, J_{H H}=8.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}{ }_{H H}=16 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.60$ (d, JHH = $9 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13}$ C NMR (126 MHz, d_{6}-DMSO) $\delta 172.2,149.4,145.9,145.7,122.2,117.1,111.8,94.9,53.1$, 44.4, 31.9;
${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-113.73$ (dd, $\left.J_{F H}=52 \mathrm{~Hz}, J_{F F}=11 \mathrm{~Hz}, 2 F\right),-132.53$
(q, $\left.J_{F F}=11 \mathrm{~Hz}, 1 \mathrm{H}\right),-141.10(\mathrm{~m}, 1 \mathrm{H}),-164.52\left(\mathrm{td}, J_{F H}=7 \mathrm{~Hz}, J_{F F}=22 \mathrm{~Hz}, 1 \mathrm{H}\right)$;
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}_{5}, 357.1026$; found, 357.1026.
NB:As less than 1 mg of product was obtained for compounds 31b and 31c, carbons assignments were determined by HSQC and HMBC analysis.

d. Synthesis of the different precursors

i. Synthesis of moxonidine analogue (36)

36 was synthetized using a 2 steps approach procedure, previously reported by B. A. Czeskis for the synthesis of $\left[{ }^{14} \mathrm{C}\right]$ moxonidine ${ }^{[3]}$.

1-[2-[(4,6-dichloropyrimidin-5-yl)amino]-4,5-dihydroimidazol-1-yl]ethenone (35)

To a suspension of 4,6-dichloropyrimidin-5-amine $33(1 \mathrm{~g}, 5.9 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(10 \mathrm{~mL})$ was added 1 -acetylimidazolidin-2-one 34 ($781 \mathrm{mg}, 5.9 \mathrm{mmol}$, 1 equiv.). The reaction was stirred at $105^{\circ} \mathrm{C}$. After 3 h , the crude mixture was cooled down to room temperature, and POCl_{3} was evaporated under reduced pressure. The residue was treated with ice water, and aqueous NaOH was added until obtention of a $\mathrm{pH}>10$. Then, the mixture was extracted twice with DCM. The combined organic layers, were then washed with brine, dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification on silica gel chromatography (isocratic: 50/50 heptane/ethyl acetate) provided compound 35 ($0.60 \mathrm{~g}, 2.2$ mmol , yield $=38 \%$) as a colorless solid.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 3.90\left(\mathrm{t}, \mathrm{J}_{H H}=7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.38(\mathrm{t}$, $J_{H H}=3 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13}$ C NMR (126 MHz, d_{6}-DMSO): $\delta 169.48,153.37,150.38,150.14,139.56,43.77,38.00$, 24.71;

HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{OCl}_{2}, 274.0262$; found, 274.0269.
4-chloro-N-(4,5-dihydro-1H-imidazol-2yl)-6-methoxy-pyrimidin-5-amine (36)

Sodium methoxide in MeOH ($0.5 \mathrm{~N}, 3 \mathrm{~mL}, 1.55 \mathrm{mmol}$, 1.1 equiv.) was added to 35 (450 mg , 1.3 mmol) The reaction was refluxed at $65^{\circ} \mathrm{C}$. After 3 h , the crude mixture was cooled down, the formed precipitate was filtered and washed twice with $\mathrm{H}_{2} \mathrm{O}$ to afford compound 36 (0.275 $\mathrm{g}, 1.2 \mathrm{mmol}$, yield $=92 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): ס 8.13 (s, 1H), 6.29 (s, 1H), 3.88 (s, 3H), 3.34 (s, 4H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 163.50,157.94,150.22,147.80,130.49,54.10,41.79$;
HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OCl}, 228.0652$; found, 228.0657.

ii. Synthesis of SV2A-PET (39)

(4R)-1-(4-pyridylmethyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one (39)
39 was synthetized in one step starting from 37 and 38 (the synthesis of an analogue of 38 is described in the patent WO2014/012563 $3^{[4])}$.

To a solution of (4R)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one 38 ($1 \mathrm{~g}, 4.64 \mathrm{mmol}$) and 4(bromomethyl)pyridine 37 ($0.8 \mathrm{~g}, 4.64 \mathrm{mmol}, 1$ equiv.) in THF (5 mL) was added NaH (371 $\mathrm{mg}, 9.3 \mathrm{mmol}, 2$ equiv., 60% in oil) portionwise. The reaction was stirred at $50^{\circ} \mathrm{C}$. After 1 h , the crude mixture was filtered over celite and evaporated under reduced pressure. The residue was taken in DCM $(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ was added $(20 \mathrm{~mL})$, and the aqueous phase was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification on silica gel chromatography (gradient: starting from 100% DCM until $90 / 10 \mathrm{DCM} / \mathrm{MeOH}$) to afford compound $39(0.80 \mathrm{~g}, 2.6 \mathrm{mmol}$, yield $=56 \%)$ as a yellow solid.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 8.54$ (d, $\left.J_{H H}=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34\left(\mathrm{dd}, J_{H H}=7 \mathrm{~Hz}, J^{\prime}{ }_{H H}=9 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.27\left(\mathrm{~d}, \mathrm{~J}_{H H}=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.54\left(\mathrm{~d}, J_{H H}=16 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.40\left(\mathrm{~d}, J_{H H}=16 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.67(\mathrm{~m}$, 2H), 3.28 (t, $\left.J_{H H}=7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.74\left(\mathrm{dd}, J_{H H}=8 \mathrm{~Hz}, J^{\prime}{ }_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.60\left(\mathrm{dd}, J_{H H}=8 \mathrm{~Hz}, J^{\prime}{ }_{H}\right.$ $=16 \mathrm{~Hz}$);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 173.32,-150.55$ (ddd, $J_{C F}=3 \mathrm{~Hz}, J^{\prime}{ }_{C F}=9 \mathrm{~Hz}, J^{\prime \prime}{ }_{C F}=248$ Hz), 150.25, 146.33, $139.97(\mathrm{~m}), 137.22$ (ddd, $J_{C F}=16 \mathrm{~Hz}, J^{\prime}{ }_{C F}=31 \mathrm{~Hz}, J^{\prime \prime}{ }_{C F}=248 \mathrm{~Hz}$), 122.96, 112.44 (dd, $J_{C F}=5 \mathrm{~Hz}, J^{\prime} C F=16 \mathrm{~Hz}$), 53.38, 44.97, 37.86, 36.94;
${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO + TFA): $\delta-137.16\left(\mathrm{dd}, J_{F F}=22 \mathrm{~Hz}, J_{F H}=9 \mathrm{~Hz}, 2 \mathrm{H}\right),-166.07$ (td, $J_{F F}=22 \mathrm{~Hz}, J_{F H}=7 \mathrm{~Hz}$);
HRMS (m/z): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}_{3}, 307.1058$; found, 307.1060.

2. Radioactive Chemistry a. Generality

No-carrier-added $\left[{ }^{18} \mathrm{~F}\right] f$ luoride was produced via the ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n})^{18} \mathrm{~F}$ nuclear reaction by bombardment of ${ }^{18} \mathrm{O}$-enriched water ($>95 \%$) with 18 MeV protons using a cyclone 18/18 (IBA) ${ }^{18} \mathrm{O}$-enriched water was purchased from Rotem or ABX. At the end of bombardment (EOB), the activity was transferred to the hot lab cell with helium pressure through Teflon tubing (~ 50 $\mathrm{m})$.
Radioactivity was measured in a dose calibrator (Veenstrat). All the radiochemical yields are decay corrected.

First experiments were realized with a low level of radioactivity ($37-185 \mathrm{MBq}(1-5 \mathrm{mCi}$). For synthesis at higher level ($111 \mathrm{GBq}(3 \mathrm{Ci})$), an automated $\mathrm{FASTlab}^{\text {TM }}$ module from GE Healthcare was used.

Thin layer chromatography (TLC) were realized silica gel Polygram ${ }^{\circledR}$ SIL G/UV ${ }_{254}$ pre-coated TLC sheets eluted with MeOH (100%). The same eluent was used for all the radioactive analyses. The radioactive spots were quantitatively detected on a Berthold TLC scanner (model AR200). The TLC identity of all the labelled compounds was confirmed by UPLC after injection and co-injections on the same analytical system (see above) of the corresponding ${ }^{19} \mathrm{~F}$-fluorinated references.

Sep-Pak cartridges (Light ${ }^{\mathrm{t}} \mathrm{C} 18(360 \mathrm{mg}, 55-105 \mu \mathrm{~m})$ and Accell ${ }^{\mathrm{TM}}$ Plus QMA Carbonate Plus Light cartridges ($46 \mathrm{mg}, 37-55 \mu \mathrm{~m}$) were obtained from Waters (Milford, USA). The ${ }^{\mathrm{t}} \mathrm{C} 18$ SPE were preconditioned beforehand with $\mathrm{MeCN}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$.

UPLC analyses were carried out on an ACQUITY UPLC ${ }^{\circledR}$ system (Waters) equipped with a PDA UV (200-400 nm) and a gamma-ray Nal detectors. The system was controlled by the Empower software. The ACQUITY UPLC ${ }^{\circledR} \mathrm{CSH}^{\top \mathrm{M}} \mathrm{C} 18$ column ($2.1 \times 100 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$; Waters), heated at $45^{\circ} \mathrm{C}$, was eluted in gradient mode with a mixture consisting of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ ($0,05 \% \mathrm{HCOOH}$) (See Table S1).

Table S1: UPLC gradient for ${ }^{18} \mathrm{~F}$-labeled compounds

Time (min)	$\mathrm{H}_{2} \mathrm{O}$ $\mathbf{(0 . 0 5 \%}$ $\mathbf{H C O O H})$ $(\%)$	MeCN $(\%)$	Flow $(\mathrm{mL} / \mathrm{min})$
0	100	0	0.5
0.5	100	0	0.5
6	25	75	0.5
7	100	0	0.5
8	100	0	0.5

The semi-preparative HPLC purification was conducted on a X-Terra® RP18 HPLC column ($10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$, Waters), connected to a stand alone HPLC. The loop of a motorized rheodyne valve was lined to the outlet of the synthesizer module. The Waters system (600 pump, 996 PDA UV detector (190-400 nm) was controlled by the Empower software. The radioactive elution profile was monitored with a custom-made Geiger-Müller (GM) radioactivity detector. The column was eluted with an isocratic mixture of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(40 / 60(v / v))$ at a flow rate of $5 \mathrm{~mL} \mathrm{~min}^{-1}$.

Flow reactions for difluoromethylation were performed using the Futurechem FlowStart EVO system, with a microchip of $100 \mu \mathrm{~L}$ and a 2 W LED of 470 nm .

b. Automated radiosynthesis of $\left[{ }^{18} \mathrm{~F}\right] 3$

The whole radiosynthesis of $\left[{ }^{18} \mathrm{~F}\right] 3$ was performed on a FASTlab ${ }^{\text {TM }}$ synthesizer from GE Healthcare. The reagents and solvents used for the radiosynthesis of $\left[{ }^{18} \mathrm{~F}\right] 3$ were placed in small sealed vials according to a process previously reported in our laboratory ${ }^{55]}$. Reagents were prepared and positioned on the FASTlab ${ }^{\top M}$ manifold as described and illustrated in Figure S2.

The enriched Oxygene-18 water containing [${ }^{18} \mathrm{~F}$]fluoride was directly recovered from the cyclotron target (V6) onto the FASTlab synthesizer and trapped on an ion exchange resin (QMA Carbonate Cartridge; from V5 to V4) and the $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ was recovered in a separate vial (V1) (Figure 2). The $\left[{ }^{18} \mathrm{~F}\right] f$ fuoride was eluted into the reactor through a central tubing (V8) with $750 \mu \mathrm{~L}$ of a Kryptofix ${ }^{\circledR}$ ($\mathrm{K}_{2.2 .2 .,} 7.5 \mathrm{mg}$ in $600 \mu \mathrm{~L}$ of MeCN) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.4 \mathrm{mg}\right.$ in $150 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$) solution. The eluent was azeotropically evaporated under vacuum and nitrogen flow by heating at $105^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$. Afterwards, 1 mL of $2-(($ bromofluoromethyl)thio)benzo[d]thiazole (1) in $\mathrm{MeCN}(11,1 \mathrm{mg} ; 0,04 \mathrm{mmol} ; 1.1 \mathrm{~mL}$) was then transferred to the dry potassium $\left[{ }^{8} \mathrm{~F}\right]$ fluoride $/ \mathrm{K}_{2.2 .2}$. complex through the central tubing of the reactor (V8) and heated to $120{ }^{\circ} \mathrm{C}$ for 5 min (labeling). After labeling, the reaction medium containing the 2((di[$\left.\left.{ }^{18} \mathrm{~F}\right] f l u o r o m e t h y\right)$)thio) benzo[d]thiazole $\left.\left({ }^{[18} \mathrm{F}\right] 2\right)$ was diluted three times in syringe $\mathrm{S} 2(\mathrm{~V} 11)$ with $\mathrm{H}_{2} \mathrm{O}(\sim 12 \mathrm{~mL})(\mathrm{V} 15)$, and the labeled compound $\left[{ }^{18} \mathrm{~F}\right] 2$ was trapped on a ${ }^{\text {t }} \mathrm{C} 18$ cartridge (from V17 to V18). The reactor was washed with $\mathrm{H}_{2} \mathrm{O}(\sim 4 \mathrm{~mL})$, and this solution was passed through the cartridge. An solution containing $\mathrm{NaIO}_{4}\left(51,3 \mathrm{mg} ; 0,24 \mathrm{mmol}\right.$) and $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ $(1,7 \mathrm{mg} ; 0,008 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})(\mathrm{V} 14)$ was passed through the ${ }^{\mathrm{t}} \mathrm{C} 18$ cartridge and the oxidation of $\left[{ }^{18} \mathrm{~F}\right] 2$ was performed on it for 5 min at room temperature. Thereafter, the crude labeled compound $\left[{ }^{18} \mathrm{~F}\right] 3$ was eluted from the ${ }^{\mathrm{t}} \mathrm{C} 18$ cartridge (from V18 to V 17 ; reverse flow elution) with MeCN (2 mL ; syringe S3, V24) and recovered into the reactor via its central tubing. After dilution with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ the resulting solution was transferred with syringe S 2 (V11) into the semi-preparative HPLC loop (V9; 6 mL) through a Sterifix ${ }^{\circledR}$ Paed filter ($0.2 \mu \mathrm{~m}$). The reactor was then washed with water ($\sim 2 \mathrm{~mL}$), and the aqueous solution was transferred into the HPLC loop. The semi-preparative HPLC purification was performed using $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (isocratic, $40 / 60(v / v)$ at $5 \mathrm{mLmin}^{-1}$). The HPLC peak corresponding to $\left[{ }^{18} \mathrm{~F}\right] 3$ was collected (retention time $=16.5-19.5 \mathrm{~min})$ in a sealed vial containing water $(\sim 30 \mathrm{~mL})$. Afterwards, $\left[{ }^{18} \mathrm{~F}\right] 3$ was pumped (from V 10), 6 mL by 6 mL , with the syringe $\mathrm{S} 2(\mathrm{~V} 11$) and further passed through a preconditioned ${ }^{\mathrm{C}} \mathrm{C} 18$ cartridge (from V21 to V22). Finally, $\left[{ }^{18} \mathrm{~F}\right] 3$ was eluted into the outlet vial (V20) with reverse flow of DMSO (1 mL, syringe S3 (V24)).

Figure S2 : Layout of the FASTLAB cassette for the radiosynthesis of [$\left.{ }^{18} \mathrm{~F}\right] 3$.

c. Optimization of the labeling and oxidative steps

The conditions screened for the labeling and oxidative steps are summarized in the following table (Table S2) and each radiochemical experiment was conducted three times ($\mathrm{n}=3$).
The Radio-LC and a LC of the references are also shown after the first table to confirm the formation of the desired product (Figures S3-6).

Table S2 : Optimization of the reaction conditions for the preparation of $\left[{ }^{18} \mathrm{~F}\right] 3$

Entry Reaction | Deviation from |
| :---: |
| usual conditions ${ }^{1,2}$ |\quad RCY(\%)

$\mathbf{1}$	I	none	15.2 ± 0.3
$\mathbf{2}$	I	$85^{\circ} \mathrm{C}$	12.7 ± 0.2
$\mathbf{3}$	I	$85^{\circ} \mathrm{C}, \mathrm{DCE}$	$7,2 \pm 0,5$
$\mathbf{4}$	I	$85^{\circ} \mathrm{C}, \mathrm{DMSO}$	0
$\mathbf{5}$	I	Precursor $1(80$ $\mu \mathrm{mol})$	5.9 ± 2.4
$\mathbf{6}$	I	$\mathrm{Et} 4+\mathrm{HCO}_{3-}$	12.8 ± 1.1
$\mathbf{7}$	II	none	13.4 ± 0.4
$\mathbf{8}$	II	$\mathrm{NaIO}_{4}(0.12$ mmol $)$	9.6 ± 0.9

${ }^{1}$ Usual conditions for I: $1(40 \mu \mathrm{~mol}), \mathrm{K}_{222}(10 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(20 \mu \mathrm{~mol}), \mathrm{MeCN}, 120^{\circ} \mathrm{C}, 5 \mathrm{~min}$
${ }^{2}$ Usual conditions for II : $\mathrm{NaIO}_{4}(240 \mu \mathrm{~mol}), \mathrm{RuCl}_{3} . \mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~mol}), \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 5 \mathrm{~min}$

Figure S3 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 2$.

Figure S4 : UPLC UV-chromatogram (254 nm) of an authentic reference 2.

Figure S5 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 3$

Auto-Scaled Chromatogram

Figure S6 : UPLC UV-chromatogram (239 nm) of an authentic reference 3

For each experiment, the RCY (decay-corrected) of $\left[{ }^{18} \mathrm{~F}\right] 2$ and $\left[{ }^{18} \mathrm{~F}\right] 3$ was determined after SPE purification on an aliquot of the final solution according to the following formula taking into account the TLC and HPLC radiochemical purity of the isolated product.

$$
R C Y(\%, d c)=\frac{\text { radioTLC purity }(\%) \times \text { radioUPLC purity }(\%) \times \text { activity of crude solution }(d c)}{\text { starting activity }(d c)} \times 100 \%
$$

d. Isolation and determination of molar activity of the sulfone [$\left.{ }^{18} \mathrm{~F}\right] 3$

The fully automated synthesis of the ${ }^{18} \mathrm{~F}$-labeled sulfone was realized with the FastLab module as described in section 2 b using the best conditions reported in section 2 c (Table 2, entry 7). The molar activity of $\left[{ }^{18} \mathrm{~F}\right] 3$ was determined on a aliquot of the DMSO solution ($5 \mu \mathrm{~L}$). After UPLC elution, the radioactive peak associated to the non-radioactive sulfone was collected and counted and the UV area of the peak determined ($\square=239 \mathrm{~nm}$). The decay-corrected activity was calculated and the corresponding amount of 3 was determined using the calibration curve previously obtained with the non-radioactive reference (Figure S7). A molar activity between 74 and $185 \mathrm{GBq} / \mu \mathrm{mol}$ (2 and $5 \mathrm{Ci} / \mu \mathrm{mol}$) was calculated.

These analyses were performed with the UPLC system and the conditions reported above.

Figure S7: Calibration curve of 3

For the following photoredox reaction, aliquots of the recovered DMSO solution of [$\left.{ }^{18} \mathrm{~F}\right] 3$ were used.

e. Optimization of the photochemical reaction

2-amino-8-(difluoromethyl)-7-(2-hydroxyethoxymethyl)-9H-purin-6-ol / CHF ${ }^{18}$ FAcyclovir [$\left.{ }^{18} \mathrm{~F}\right] 5$

A solution of acyclovir ($4.5 \mathrm{mg}, 20 \mu \mathrm{~mol}$), $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](0.01 \mu \mathrm{~mol})$ in DMSO ($200 \mu \mathrm{~L}$) was prepared. Then $\left[{ }^{18} \mathrm{~F}\right] 3$ in DMSO (around $37 \mathrm{MBq} / 1 \mathrm{mCi}$) was added and the solution was injected through a $100 \mu \mathrm{~L}$ microchip, pumped with DMSO at a flow rate of $50 \mu \mathrm{~L} / \mathrm{min}$ (residence time of 2 min) and irradiated under blue LED ($470 \mathrm{~nm}, 2 \mathrm{~W}$), at a temperature of $35^{\circ} \mathrm{C}$ (see the instrument in Figure S8). The exited solution was analysed by Radio-TLC and Radio-UPLC for radiochemical yield determination.

Figure S8: Flow chemistry instrument used for ${ }^{18} \mathrm{~F}$-difluoromethylation; Futurechemistry
Radiochemical yields were determined according the following formula and are not decay corrected.

$$
R C Y(\%)=\frac{L C \text { purity }(\%) * \text { TLC purity }(\%)}{100}
$$

For instance :

Figure S9: Radio TLC of [$\left.{ }^{18} \mathrm{~F}\right] 5$
Table S3 : Results Radio-TLC [$\left.{ }^{18} \mathrm{~F}\right] 5$

0.03	26 (impurity/byproduct)
0.79	74 (product)

Figure S10 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 5$

Figure S11 : UPLC UV-chromatogram of an authentic reference 5

$$
\begin{gathered}
R C Y(\%)=\frac{L C \text { purity }(\%) * \text { TLC purity }(\%)}{100} \\
R C Y(\%)=\frac{100 * 74}{100} \\
R C Y(\%)=74 \%(n d c)
\end{gathered}
$$

NB : In some cases, some peaks at 0.6 and 0.9 min can be observed on the radio-UPLC chromatograms. Those two peaks were collected and analysed by radio-TLC. Their Rf being
of 0 , they were not taking into account for the determination of the LC purity (as they were already taken into account in the determination of the TLC purity).

The results of the different optimization tests are summarized in the following table :
Conditions : Acyclovir ($20 \mu \mathrm{~mol}$) , $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](0.01 \mu \mathrm{~mol}),\left[{ }^{18} \mathrm{~F}\right] 3(37 \mathrm{MBq})$, DMSO $(200 \mu \mathrm{~L})$, $2 \mathrm{~min}, 35^{\circ} \mathrm{C}$, blue LED (2 W)

Table S4 : Screening of experimental conditions for the ${ }^{18}$ F-difluoromethylation reaction

Entry	Deviation from usual conditions	RCY(\%, ndc)
$\mathbf{1}$	none	70 ± 7
$\mathbf{2}$	$55^{\circ} \mathrm{C}$	51 ± 10
$\mathbf{3}$	DMF	44 ± 1
$\mathbf{4}$	30 s	60 ± 8
$\mathbf{5}$	$\operatorname{Ir}(\text { ppy })_{3}(0.001 \mu \mathrm{~mol})$	42
$\mathbf{6}$	Benzophenone ${ }^{1}$	47 ± 5
$\mathbf{7}$	Ru(bpy $)_{3}$	0
$\mathbf{8}$	$\mathrm{H}_{2}(50 \mu \mathrm{~L})$	45 ± 10
$\mathbf{9}$	After HPLC purification	42 ± 4^{2}

${ }^{1}$ benzophenone ($10 \mu \mathrm{~mol}$), 365nm, ${ }^{2}$ Isolated Radiochemical Yield ($\mathrm{n}=4$)
Only a few solvents allows a complete solubilization of the substrate, DMSO gives better results
than
DMF.
The temperature is also an important parameter: too high temperature leads to more degradation.
The best conditions for the ${ }^{18} \mathrm{~F}$-difluoromethylation are $35^{\circ} \mathrm{C}$, $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](0.01 \mu \mathrm{~mol}), 2$ minutes of residence time and DMSO as solvent (see entry 1, Table S4). These conditions were applied to the scope.

f. Isolation and Molar activity of CHF ${ }^{18}$ FAcyclovir [$\left.{ }^{18} \mathrm{~F}\right] 5$

After completion of the photoredox reaction that was realized as described in the previous section, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. The purification of $\left[{ }^{18} \mathrm{~F}\right] 5$ was then conducted at $5 \mathrm{~mL} / \mathrm{min}$ on the semi preparative HPLC column described above. The eluent was a mixture of $\mathrm{H}_{2} \mathrm{O}(95 \%)$ and $\operatorname{MeCN}(5 \%)$. Based on the amount of sulfone used for the photochemistry reaction, the RCY of $\left[{ }^{18} \mathrm{~F}\right] 5$ purified by HPLC was of $42 \pm 4 \%$ (dc).

Then following the same process as for compound 3, a calibration curve (Figure S12) was realized with 5 to determine the molar activity of the product.

Figure S12: Calibration curve of 5
The molar activity (dc) was of $44.4 \pm 11.1 \mathrm{GBq} / \mu \mathrm{mol}(1.2 \pm 0.3 \mathrm{Ci} / \mu \mathrm{mol})$.

g. Mechanistic studies

The proposed mechanism of the reaction is represented in the following figure: (Figure S13)

Figure S13 : Proposed mechanism

No product was obtained in the absence of light or photocatalyst (entries 1 and 2, Table S5) and in presence of TEMPO (entry 3), suggesting that radical species are involved, as proposed in the mechanism.

Table S5 : Tests for mechanistic studies

Entry	Deviation from usual conditions	RCY (\%)
$\mathbf{1}$	No catalyst	0
$\mathbf{2}$	No light	0
$\mathbf{3}$	TEMPO	0

h. General procedure for ${ }^{18}$ F-difluoromethylation

A solution of the substrate $(20 \mu \mathrm{~mol}),\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](0.01 \mu \mathrm{~mol})$ in DMSO $(200 \mu \mathrm{~L})$ was prepared. Then the [$\left.{ }^{18} \mathrm{~F}\right] 3$ in DMSO (around $37 \mathrm{MBq} / 1 \mathrm{mCi}$) was added. The solution was injected in a $100 \mu \mathrm{~L}$ microchip, pumped with DMSO at a flow rate of $50 \mu \mathrm{~L} / \mathrm{min}$ (residence time of 2 min) and irradiated under blue LED ($470 \mathrm{~nm}, 2 \mathrm{~W}$), at a temperature of $35^{\circ} \mathrm{C}$.

The exited solution was analyzed by Radio-TLC and Radio-UPLC for radiochemical yield determination.

i. Scope

4-(difluoromethyl)-1H-indole $\left[{ }^{18} \mathrm{~F}\right] 6$

$\left[{ }^{18} \mathrm{~F}\right] 6$
General procedure using indole ($2.3 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $18 \pm 1 \%$ as RCY (ndc, on crude product) of the title compound (see Table S6 and Figures S14 and S15 for radio LC of the labelled compound and LC analysis of the reference).

Table S6 : Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 6$

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	60	32	19
$\mathbf{2}$	59	30	18
$\mathbf{3}$	61	30	18
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S14: UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 6$

Auto-Scaled Chromatogram

Figure S15 : UPLC UV-chromatogram of an authentic reference 6

2-(difluoromethyl)-1H-benzimidazole $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$; 4-(difluoromethyl)-1H-benzimidazole [${ }^{18}$ F]7b ;

5-(difluoromethyl)-1H-benzimidazole [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$

$\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{a}$

$\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{~b}$

$\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$

General procedure using benzimidazole ($2.4 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded respectively to $20 \pm 1 \%, 41$ $\pm 5 \%$ and $10 \pm 4 \%$ as RCYs (ndc, on crude product) of the title compounds [$\left.{ }^{18} \mathrm{~F}\right] 7 \mathrm{a},\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{~b}$ and $\left[{ }^{18} \mathrm{~F}\right] 7 \mathrm{c}$ (see Table S7 and Figures S16 to S18 for radio LC of the labelled compound and LC analysis of the references).

Table S7: Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 7$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)			Radiochemical Yield		
	$\mathrm{a}+\mathrm{b}+\mathrm{c}$	a	b	c	a	b	c
	72	27	65	8	19	47	6
$\mathbf{1}$	64	32	55	13	21	36	8
$\mathbf{3}$	70	27	53	20	19	37	14
Radiochemical Yield + Deviation (\%)					20 ± 1	41 ± 5	10 ± 4

Figure S16: UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 7$

Figure S17 : UPLC UV-chromatogram of an authentic reference 7a

Auto-Scaled Chromatogram

Figure S18: UPLC UV-chromatogram of an authentic reference 7b

Figure S19: UPLC UV-chromatogram of an authentic reference 7c

2-(difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine $\left[{ }^{18} \mathrm{~F}\right] 8 \mathrm{a}$; 6-(difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine $\left[{ }^{18} \mathrm{~F}\right] 8 \mathrm{~b}$

General procedure using 4-methyl-1H-pyrrolo[2,3-b]pyridine ($2.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded respectively to $61 \pm 1 \%$ and 7% as RCYs (ndc, on crude product) of the title compounds
[$\left.{ }^{18} \mathrm{~F}\right] 8 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 8 \mathrm{~b}$ (see Table S8 and Figures S20 to S22 for radio LC of the labelled compound and LC analysis of the references).

Table S8 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 8$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield $(\%)$						
	$\mathrm{a}+\mathrm{b}$	a	b	a	b				
$\mathbf{1}$	65	90	10	59	7				
$\mathbf{2}$	69	90	10	62	7				
$\mathbf{3}$	68	90	10	61	7				
Radiochemical Yield + Deviation (\%)								61 ± 1	7

Auto-Scaled Chromatogram

Figure S20: UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 8$

Figure S21: UPLC UV-chromatogram of an authentic reference 8a

Figure S22 : UPLC UV-chromatogram of an authentic reference 8b

4-(difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine [18 ${ }^{18}$ F9a; 3-(difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine $\left[{ }^{18} \mathrm{~F}\right] 9 \mathrm{~b}$

General procedure using 6-methyl-1H-pyrazolo[3,4-b]pyridine ($2.2 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded respectively to $20 \pm 1 \%$ and $54 \pm 2 \%$ as RCYs (ndc, on crude product) of the title compounds [$\left.{ }^{18} \mathrm{~F}\right] 9$ a and $\left[{ }^{18} \mathrm{~F}\right] 9 \mathrm{~b}$ (see Table S9 and Figures S23 to S25 for radio LC of the labelled compound and LC analysis of the references).

Table S9 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 9$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)		Radiochemical Yield (\%)					
	$\mathrm{a}+\mathrm{b}$	a	b	a	b				
$\mathbf{1}$	74	25	75	19	56				
$\mathbf{2}$	73	29	71	21	52				
$\mathbf{3}$	75	28	72	20	54				
Radiochemical Yield + Deviation (\%)								20 ± 1	54 ± 2

Auto-Scaled Chromatogram

Figure S23 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 9$

Figure S24 : UPLC UV-chromatogram of an authentic reference 9a

Auto-Scaled Chromatogram

Figure S25 : UPLC UV-chromatogram of an authentic reference 9b

2-[3,5-dichloro-2-(difluoromethyl)-4-pyridyl]-N,N-dimethyl-acetamide [$\left.{ }^{18} \mathrm{~F}\right] 10$

$\left[{ }^{18} \mathrm{~F}\right] 10$
General procedure using 2-(3,5-dichloro-4-pyridyl)-N,N-dimethyl-acetamide ($4.7 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $57 \pm 5 \%$ as RCY (ndc, on crude product) of the title compound (see Table S10 and Figures S26 and S27 for radio LC of the labelled compound and LC analysis of the reference).

Table S10: Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 10$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	75	82	62
$\mathbf{2}$	71	73	52
$\mathbf{3}$	65	93	60
Radiochemical Yield + Deviation (\%)		57 ± 5	

Auto-Scaled Chromatogram

Figure S26 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 10$

Figure S27 : UPLC UV-chromatogram of an authentic reference 10

3-chloro-1-(difluoromethyl)-6,7-dihydro-5H-cyclopenta[c]pyridine-4-carbonitrile [${ }^{18} \mathrm{~F}$]11

$\left[{ }^{18} \mathrm{~F}\right] 11$

General procedure using 3-chloro-6,7-dihydro-5H-cyclopenta[c]pyridine-4-carbonitrile (3.6 $\mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $45 \pm 2 \%$ as RCY (ndc, on crude product) of the title compound (see

Table S11 and Figures S28 and S29 for radio LC of the labelled compound and LC analysis of the reference).

Table S11 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 11$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield (\%)
$\mathbf{1}$	50	95	47
$\mathbf{2}$	43	100	43
$\mathbf{3}$	46	100	46
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S28 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 11$

Auto-Scaled Chromatogram

Figure S29 : UPLC UV-chromatogram of an authentic reference 11

2-chloro-4-(difluoromethyl)-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile [$\left.{ }^{18} \mathrm{~F}\right] 12$

$\left[{ }^{18} \mathrm{~F}\right] 12$
General procedure using 2-chloro-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile (3.6 $\mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $42 \pm 13 \%$ as RCY (ndc, on crude product) of the title compound (see Table S12 and Figures S30 and S31 for radio LC of the labelled compound and LC analysis of the reference).

Table S12: Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 12$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	45	100	45
$\mathbf{2}$	47	62	29
$\mathbf{3}$	63	87	55
Radiochemical Yield + Deviation (\%)		42 ± 13	

Auto-Scaled Chromatogram

Figure S30 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 12$

Figure S31 : UPLC UV-chromatogram of an authentic reference 12

4-(difluoromethyl)-2-tetrahydropyran-4-yl-pyrimidin-5-amine $\left[{ }^{18} \mathrm{~F}\right] 13$

$\left[{ }^{18} \mathrm{~F}\right] 13$

General procedure using 2-tetrahydropyran-4-ylpyrimidin-5-amine ($3.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $69 \pm 3 \%$ as RCY (ndc, on crude product) of the title compound (see Table S13 and Figures S32 and S33 for radio LC of the labelled compound and LC analysis of the reference).

Table S13: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 13$

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	71	100	71
$\mathbf{2}$	67	98	66
$\mathbf{3}$	72	99	71
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S32 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 13$

Figure S33 : UPLC UV-chromatogram of an authentic reference 13

4-chloro-2-(difluoromethyl)-6-methoxy-pyrimidin-5-amine $\left[{ }^{18} \mathrm{~F}\right] 14$

$\left[{ }^{18} \mathrm{~F}\right] 14$
General procedure using 4-chloro-6-methoxy-pyrimidin-5-amine ($3.2 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $57 \pm 6 \%$ as RCY (ndc, on crude product) of the title compound (see Table S14 and Figures S34 and S35 for radio LC of the labelled compound and LC analysis of the reference).

Table S14: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 14$

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	57	90	51
$\mathbf{2}$	69	90	62
$\mathbf{3}$	76	85	64
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S34 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 14$

Auto-Scaled Chromatogram

Figure S35 : UPLC UV-chromatogram of an authentic reference 14

4-(difluoromethyl)-5-methyl-pyrimidin-2-amine [${ }^{18} \mathrm{~F}$]15

$\left[{ }^{18} \mathrm{~F}\right] 15$
General procedure using 5-methylpyrimidin-2-amine ($2.2 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $43 \pm 3 \%$ as RCY (ndc, on crude product) of the title compound (see Table S15 and Figures S36 and S37 for radio LC of the labelled compound and LC analysis of the reference).

Table S15: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 15$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	41	100	41
$\mathbf{2}$	42	100	42
$\mathbf{3}$	46	100	46
Radiochemical Yield + Deviation (\%)		43 ± 3	

Figure S36 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 15$

Figure S37 : UPLC UV-chromatogram of an authentic reference 15

4-(difluoromethyl)-2-methyl-6,8-dihydro-5H-pyrido[2,3-d]pyrimidin-7-one $\left[{ }^{18} \mathrm{~F}\right] 16$

$\left[{ }^{18} \mathrm{~F}\right] 16$
General procedure using 2-methyl-6,8-dihydro-5H-pyrido[2,3-d]pyrimidin-7-one ($3.3 \mathrm{mg}, 20$ $\mu \mathrm{mol})$, with a residence time of 4 min and $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right]$ ($0.05 \mu \mathrm{~mol}$) yielded to $32 \pm 4 \%$ as RCY (ndc, on crude product) of the title compound (see Table S16 and Figures S38 and S39 for radio LC of the labelled compound and LC analysis of the reference).

Table S16 : Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 16$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	53	66	36
$\mathbf{2}$	59	46	27
$\mathbf{3}$	55	60	33
Radiochemical Yield + Deviation (\%)		32 ± 4	

Auto-Scaled Chromatogram

Figure S38 : UPLC radio-chromatogram of [$\left.{ }^{18} \mathrm{~F}\right] 16$

Auto-Scaled Chromatogram

Figure S39: UPLC UV-chromatogram of an authentic reference 16
5-(difluoromethyl)-1H-pyrimido[4,5-d]pyridazine-2,4-dione, 8-(difluoromethyl)-1H-pyrimido[4,5-d]pyridazine-2,4-dione [$\left.{ }^{18} \mathrm{~F}\right] 17$

General procedure using 1 H -pyrimido[4,5-d]pyridazine-2,4-dione ($3.3 \mathrm{mg}, 20 \mu \mathrm{~mol}$) with a residence time of 4 min and $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](0.05 \mu \mathrm{~mol})$ yielded to $75 \pm 1 \%$ as RCY (ndc, on crude product) of the title compound (see Table S17 and Figures S40 and S41 for radio LC of the labelled compound and LC analysis of the reference).

Table S17 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 17$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield $(\%)$
$\mathbf{1}$	79	96	76
$\mathbf{2}$	76	96	74
$\mathbf{3}$	77	96	74
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S40 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 17$

Figure S41: UPLC UV-chromatogram of an authentic reference 17

Methyl 2-[3,5-dichloro-6-(difluoromethyl)-1-tetrahydropyran-2-yl-pyrazolo[3,4-b]pyridin-4-yl]acetate $\left[{ }^{[8} \mathrm{F}\right] 18$

$\left[{ }^{18} \mathrm{~F}\right] 18$
General procedure using methyl 2-(3,5-dichloro-1-tetrahydropyran-2-yl-pyrazolo[3,4-b]pyridin-4-yl)acetate $(6.9 \mathrm{mg}, 20 \mu \mathrm{~mol})$, with a residence time of 4 min and $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](0.05$ $\mu \mathrm{mol}$) yielded to $38 \pm 5 \%$ as RCY (ndc, on crude product) of the title compound (see Table S18 and Figures S42 and S43 for radio LC of the labelled compound and LC analysis of the reference).

Table S18: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 18$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	74	60	44
$\mathbf{2}$	76	43	33
$\mathbf{3}$	69	58	40
Radiochemical Yield + Deviation (\%)			38 ± 5

Auto-Scaled Chromatogram

Figure S42 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 18$

Auto-Scaled Chromatogram

Figure S43 : UPLC UV-chromatogram of an authentic reference 18

4-(difluoromethyl)-6-methyl-2-methylsulfanyl-8H-pyrimido[4,5-d]pyrimidine-5,7-dione [$\left.{ }^{18} \mathrm{~F}\right] 19$

General procedure using 6-methyl-2-methylsulfanyl-8H-pyrimido[4,5-d]pyrimidine-5,7-dione ($4.5 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $43 \pm 3 \%$ as RCY (ndc, on crude product) of the title compound (see Table S19 and Figures S44 and S45 for radio LC of the labelled compound and LC analysis of the reference).

Table S19: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 19$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield (\%)
$\mathbf{1}$	76	60	46
$\mathbf{2}$	70	60	42
$\mathbf{3}$	67	60	40
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S44 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 19$

Figure S45 : UPLC UV-chromatogram of an authentic reference 19

8-(difluoromethyl)-1,3,7-trimethyl-purine-2,6-dione/ $\mathrm{CHF}^{18} \mathrm{~F}$-caffeine $\left[{ }^{18} \mathrm{~F}\right] 20$

General procedure using caffeine ($3.9 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $51+/-1 \%$ as RCY (ndc, on crude product) of the title compound (see Table S20 and Figures S46 and S47 for radio LC of the labelled compound and LC analysis of the reference).

Table S20: Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 20$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	50	100	50
$\mathbf{2}$	50	100	50
$\mathbf{3}$	52	100	52
Radiochemical Yield + Deviation (\%)		51 ± 1	

Figure S46 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 20$

Figure S47 : UPLC UV-chromatogram of an authentic reference 20

8-(difluoromethyl)-1,3-dimethyl-7H-purine-2,6-dione / CHF^{18} F-theophylline $\left[{ }^{18} \mathrm{~F}\right] 21$

General procedure using theophylline ($3.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $42 \pm 6 \%$ as RCY (ndc, on crude product) of the title compound (see Table S21 and Figures S48 and S49 for radio LC of the labelled compound and LC analysis of the reference).

Table S21 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 21$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	51	96	48
$\mathbf{2}$	43	83	36
$\mathbf{3}$	57	74	42
Radiochemical Yield + Deviation (\%)			

Figure S48: UPLC radio-chromatogram of [$\left.{ }^{18} \mathrm{~F}\right] 21$

Auto-Scaled Chromatogram

Figure S49: UPLC UV-chromatogram of an authentic reference 21

8-(difluoromethyl)-3,7-dimethyl-1-(5-oxohexyl)purine-2,6-dione / CHF ${ }^{18}$ F-pentoxyfilline $\left[{ }^{18} \mathrm{~F}\right] 22$

General procedure using pentoxyfilline ($5.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $30 \pm 5 \%$ as RCY (ndc, on crude product) of the title compound (see Table S22 and Figures S50 and S51 for radio LC of the labelled compound and LC analysis of the reference).

Table S22: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 22$

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	34	100	34
$\mathbf{2}$	43	70	31
$\mathbf{3}$	30	85	25
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S50: UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 22$

Figure S51: UPLC UV-chromatogram of an authentic reference 22

5-(difluoromethyl)-1,3-dimethyl-pyrimidine-2,4-dione / CHF ${ }^{18}$ F-dimethyl-uracil [$\left.{ }^{18} \mathrm{~F}\right] 23$

$\left[{ }^{18} \mathrm{~F}\right] 23$
General procedure using dimethyl-uracil ($2.8 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $54 \pm 1 \%$ as RCY (ndc, on crude product) of the title compound (see Table S23 and Figures S52 and S53 for radio LC of the labelled compound and LC analysis of the reference).

Table S23 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 23$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield $(\%)$
$\mathbf{1}$	78	70	55
$\mathbf{2}$	70	75	53
$\mathbf{3}$	75	70	53
Radiochemical Yield + Deviation (\%)		54 ± 1	

Figure S52 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 23$

Figure S53 : UPLC UV-chromatogram of an authentic reference 23

6-amino-5-(difluoromethyl)-1H-pyrimidin-2-one $\left[{ }^{18} \mathrm{~F}\right] 24 \mathrm{a}$ and 6-amino-4-(difluoromethyl)-1H-pyrimidin-2-one $\left[{ }^{18} \mathrm{~F}\right] 24 \mathrm{~b} / \mathrm{CHF}{ }^{18} \mathrm{~F}$-cytosine $\left[{ }^{18} \mathrm{~F}\right] 24$

$\left[{ }^{18} \mathrm{~F}\right] 24 a$

$\left[{ }^{18} \mathrm{~F}\right] 24 \mathrm{~b}$

General procedure using cytosine ($3.2 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $60 \pm 2 \%$ as RCY (ndc, on crude product) of the title compounds. The two isomers were not distincted in UPLC analyses, the ratio was then not determined. (see Table S24 and Figures S54 and S55 for radio LC of the labelled compound and LC analysis of the reference).

Table S24 : Radiochemical yield of $\left[{ }^{18} \mathrm{~F}\right] 24$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield $(\%)$
$\mathbf{1}$	58	100	58
$\mathbf{2}$	57	100	57
$\mathbf{3}$	62	100	62
Radiochemical Yield + Deviation (\%)		60 ± 2	

Figure S54 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 24$

Auto-Scaled Chromatogram

Figure S55 : UPLC UV-chromatogram of an authentic reference 24a and 24b

8-(difluoromethyl)-9H-purin-6-amine / CHF ${ }^{18}$ F-adenine [${ }^{18} \mathrm{~F}$]25

$\left[{ }^{18} \mathrm{~F}\right] 25$
General procedure using adenine ($2.7 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $65 \pm 6 \%$ as RCY (ndc, on crude product) of the title compound (see Table S25 and Figures S56 and S57 for radio LC of the labelled compound and LC analysis of the reference).

Table S25 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 25$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)	Radiochemical Yield $(\%)$
$\mathbf{1}$	76	94	71
$\mathbf{2}$	65	100	65
$\mathbf{3}$	59	100	59
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S56 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 25$

Figure S57 : UPLC UV-chromatogram of an authentic reference 25
(1S)-5-(difluoromethyl)-1-[(3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione / CHF ${ }^{18} \mathrm{~F}$-uridine $\left[{ }^{18} \mathrm{~F}\right] 26$

[$\left.{ }^{18} \mathrm{~F}\right] 26$
General procedure using uridine ($4.8 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $71 \pm 4 \%$ as RCY (ndc, on crude product) of the title compound (see Table S26 and Figures S58 and S59 for radio LC of the labelled compound and LC analysis of the reference).

Table S26: Radiochemical yield of [${ }^{18} \mathrm{~F}$]26

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	75	100	75
$\mathbf{2}$	76	100	76
$\mathbf{3}$	67	100	67
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S58 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 26$

Auto-Scaled Chromatogram

Figure S59 : UPLC UV-chromatogram of an authentic reference 26
(1S)-4-amino-5-(difluoromethyl)-1-[(3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2-one / CHF ${ }^{18}$ F-cytidine $\left[{ }^{18} \mathrm{~F}\right] 27$

$\left[{ }^{18} \mathrm{~F}\right] 27$
General procedure using cytidine ($4.8 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $65 \pm 2 \%$ as RCY (ndc, on crude product) of the title compound (see Table S27 and Figures S60 and S61 for radio LC of the labelled compound and LC analysis of the reference).

Table S27 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 27$

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	64	100	64
$\mathbf{2}$	67	100	67
$\mathbf{3}$	66	100	66
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S60 : UPLC radio-chromatogram of [$\left.{ }^{18} \mathrm{~F}\right] 27$

Figure S61: UPLC UV-chromatogram of an authentic reference 27
(3R,4S,5R)-2-[(9S)-6-amino-8-(difluoromethyl)purin-9-yl]-5-(hydroxymethyl) tetrahydrofuran-3,4-diol / CHF ${ }^{18}$ F-Adenosine $\left[{ }^{18} \mathrm{~F}\right] 28$

General procedure using adenosine ($5.3 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $59 \pm 5 \%$ as RCY (ndc, on crude product) of the title compound (see Table S28 and Figures S62 and S63 for radio LC of the labelled compound and LC analysis of the reference).

Table S28: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 28$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	64	97	62
$\mathbf{2}$	59	100	59
$\mathbf{3}$	55	100	55
Radiochemical Yield + Deviation (\%)			

Figure S62 : UPLC radio-chromatogram of [$\left.{ }^{18} \mathrm{~F}\right] 28$

Auto-Scaled Chromatogram

Figure S63: UPLC UV-chromatogram of an authentic reference 28
(9S)-2-amino-8-(difluoromethyl)-9-[(3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl]-1H-purin-6-one / CHF ${ }^{18}$ F-guanosine [${ }^{18} \mathrm{~F}$]29

General procedure using guanosine ($5.7 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $62 \pm 6 \%$ as RCY (ndc, on crude product) of the title compound (see Table S29 and Figures S64 and S65 for radio LC of the labelled compound and LC analysis of the reference).

Table S29: Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 29$

Reaction	Radio-TLC purity (\%)	Radio-LC purity $(\%)$	Radiochemical Yield $(\%)$
$\mathbf{1}$	61	100	61
$\mathbf{2}$	68	100	68
$\mathbf{3}$	56	100	56
Radiochemical Yield + Deviation (\%)			62 ± 6

Auto-Scaled Chromatogram

Figure S64 : UPLC radio-chromatogram of [$\left.{ }^{18} \mathrm{~F}\right] 29$

Figure S65 : UPLC UV-chromatogram of an authentic reference 29

4-chloro-2-(difluoromethyl)-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-pyrimidin-5amine / $\mathrm{CHF}{ }^{18} \mathrm{~F}$-moxonidine analogue $\left[{ }^{18} \mathrm{~F}\right] 30$

[$\left.{ }^{18} \mathrm{~F}\right] 30$

General procedure using moxonidine analogue ($4.5 \mathrm{mg}, 20 \mu \mathrm{~mol}$) yielded to $65 \pm \% 4$ as RCY (ndc, on crude product) of the title compound (see Table S30 and Figures S66 and S67 for radio LC of the labelled compound and LC analysis of the reference).

Table S30 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 30$

Reaction	Radio-TLC purity $(\%)$	Radio-LC purity $(\%)$	Radiochemical Yield (\%)
$\mathbf{1}$	63	100	63
$\mathbf{2}$	69	100	69
$\mathbf{3}$	61	100	61
Radiochemical Yield + Deviation (\%)			

Auto-Scaled Chromatogram

Figure S66 : UPLC radio-chromatogram of $\left[{ }^{18} \mathrm{~F}\right] 30$

Auto-Scaled Chromatogram

Figure S67: UPLC UV-chromatogram of an authentic reference 30
(4R)-1-[[2-(difluoromethyl)-4-pyridyl]methyl]-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one $\left.{ }^{18} \mathrm{~F}\right] 31 \mathrm{a}$,
(4R)-1-[[3-(difluoromethyl)-4-pyridyl]methyl]-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one $\quad\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{~b}, \quad(4 \mathrm{R})$-4-[2-(difluoromethyl)-3,4,5-trifluoro-phenyl]-1-(4-pyridylmethyl)pyrrolidin-2-one [${ }^{18}$ F]31c

[${ }^{18}$ F]31a

$\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{~b}$

$\left[{ }^{18}\right.$ F] 31 c

General procedure using compound $39(6.1 \mathrm{mg}, 20 \mu \mathrm{~mol})$ yielded respectively to $14.8 \%, 3.8 \%$ and 7.1% as RCYs (ndc, on crude product) of $\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{a},\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{~b}$ and $\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{c}$ (see Table S31 and Figures S 68 to S 71 for radio LC of the labelled compound and LC analysis of the reference).

Table S31 : Radiochemical yield of [$\left.{ }^{18} \mathrm{~F}\right] 31$

Reaction	Radio-TLC purity (\%)	Radio-LC purity (\%)			Radiochemical Yield (\%)		
	a+b+c	a	b	c	a	b	c
1	80	20	5	10	16	4	8
2	75	18	6	9	13.5	4.5	7
3	78	19	4	8	14.8	3.1	6.2
Radiochemical Yield + Deviation (\%)					$\begin{gathered} 14.8 \pm \\ 0.3 \end{gathered}$	3.8 ± 0.7	$\begin{gathered} 7.1 \pm \\ 0.9 \end{gathered}$

Different analyses conditions were used, to ensure a better separation of the different isomers.
The new analytic gradient is disclosed in the table below : (Table S32)
Table S32 : Gradient used for SVA PET tracer compounds

Time (min)	$\mathrm{H}_{2} \mathbf{O}$ $(\mathbf{0 . 0 5 \%}$ $\mathbf{H C O O H})$ $(\%)$	MeCN $(\%)$	Flow $(\mathbf{m L} / \mathrm{min})$
0	100	0	0.5
0.5	100	0	0.5
0.6	70	30	0.5
10	65	35	0.5
10.1	0	100	0.5
11	0	100	0.5
12	100	0	0.5
13	100	0	0.5

Figure S68 : UPLC radio-chromatogram of [$\left.{ }^{18} \mathrm{~F}\right] 31$

Auto-Scaled Chromatogram

Figure S69 : UPLC UV-chromatogram of an authentic reference 31a

Figure S70 : UPLC UV-chromatogram of an authentic reference 31b

Auto-Scaled Chromatogram

Figure S71 : UPLC UV-chromatogram of an authentic reference 31c

Then a Semi-Prep HPLC, using a mixture of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1 / 1)$ as eluent was performed to recover $\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{a}$ and $\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{~b}$ with respective isolated RCYs dc of $4.2 \pm 0.3 \%$ and 1.5 ± 0.1 $\%(\mathrm{n}=3)$. Starting from $7 \mathrm{mCi}, 0.1 \mathrm{mCi}$ of $\left[{ }^{18} \mathrm{~F}\right] 31 \mathrm{~b}$ was isolated after 20 minutes (photoredox reaction + purification).

3. Comparison batch fluorine-19/flow fluorine-18 conditions

Some of the substrates were also tested in non-radioactive chemistry to able a comparison between non-radioactive and radioactive chemistry and put in evidence the difference of reactivity between both conditions. The general procedure and the results are reported just below.

a. General procedure for batch fluorine-19 conditions

A solution of the substrate (0.10 mmol), 2-((Difluoromethyl)sulfonyl)benzo[d]thiazole $\mathbf{3}$ (37 mg , $0.15 \mathrm{mmol}, 1.5$ equiv.), and $\left[\operatorname{lr}(\mathrm{ppy})_{3}\right](3.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in DMSO (0.5 mL) was prepared. The vial was put over a LED ($455 \mathrm{~nm}, 1 \mathrm{~W}, 55^{\circ} \mathrm{C}$, see equipment below, Figure S72) and stirred for 24 hours.

2-((Difluoromethyl)sulfonyl)benzo[d]thiazole 3 ($37 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv.), and [lr(ppy) ${ }_{3}$] ($3.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added again to the reaction, and the crude mixture was irradiated for another 24 hours.
Yields were determined by ${ }^{19} \mathrm{~F}$ NMR after 24 and 48 h reaction time.

Figure S 72 : 1W LED (455nm) equipment used for non-radioactive batch conditions

b. Results

The general procedure was applied to 10 compounds of the scope and the results are presented in the following table (Table S33) :

Table S33: Comparative table for ${ }^{19} \mathrm{~F}$ vs ${ }^{18} \mathrm{~F}$ conditions
${ }^{1}$ See part 1.c.i/iii for general procedures and results, ${ }^{2}$ See part $2 \mathrm{~h} / \mathrm{i}$ for general procedures and results, NA : Non available

Molecule	${ }^{19}$ F-batch conditions		${ }^{19}$ F-Flow Pseudo PET onditions	$\begin{gathered} { }^{18} \text { F flow } \\ \text { conditions }{ }^{2} \end{gathered}$
	$\begin{gathered} { }^{19} \mathrm{~F}- \\ \text { NMR } \\ \text { yield } \\ 24 \mathrm{~h}(\%) \end{gathered}$	${ }^{19}$ F-NMR yield 48h (\%)	Isolated yield (\%)	RCY (on crude product, \%) $\mathrm{n}=3$
	30	30	15	71 ± 5

$\begin{array}{cc}13 & 12 \\ a / b: 3 / 1 & a / b: 2 / 1\end{array}$
NA
67 ± 2 $a / b: 90 / 10$

8

(10

(13

(

It is interesting to note that in most cases, yields are way lower in non-radioactive chemistry (molecules 5, 8, 9, 12, 14, 23, 28) while similar results are obtained with both fluorine-19 conditions.

Noteworthy, adding new portion of the difluoromethylating agent (3), and catalyst doesn't lead to much yield improvement suggesting the formation of a poisoning reagent preventing the reaction to continue.

Finally, the isomers ratio can be slightly different between all conditions. All these results clearly showed an improved reactivity of the reaction using fluorine-18.

4. References

${ }^{[1]}$ Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494.
${ }^{[2]}$ A. Sakamoto, H. Kashiwagi, K. Maruoka, Org. Lett. 2017, 19, 5126.
${ }^{[3]}$ B. A. Czeskis, J. Label. Comp. Radiopharm. 2004, 47, 699.
${ }^{[4]}$ B. Kenda, E. Jnoff, International patent, WO2014/012563 A1 (2014).
${ }^{[5]}$ C. Lemaire, L. Libert, X. Franci, J.-L. Genon, S. Kuci, F. Giacomelli, A. Luxen, J. Label. Comp. Radiopharm. 2015, 58, 281.

5. NMR spectra

a. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 1

Wiley-vch

 $\int\|\|$

告	$\stackrel{\square}{\text { ® }}$	哭		ส
1	1	1	\V	1

Wiley-vch

SUPPORTING INFORMATION

b. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 2

> A
$\underbrace{\infty} \underbrace{\infty} \underbrace{\infty} \underbrace{\infty}_{n} \underbrace{\infty}_{n} \underbrace{n}_{n} n_{n}^{n}$

2

								交														
12	11.	1	10.5	10	, 5		1 5	1	7.5	7.	$1{ }^{1}$	1	5		T	,		1	1.		15	1.
12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	${ }_{\text {f1 }}^{6.5}(\mathrm{ppm})$	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0

[^0]

2

Wiley-vch

c. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 3

$\underbrace{\text { fo }}$

3

Wiley-vch

d. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 5

Wiley-VCH

Wiley-vCh

SUPPORTING INFORMATION

$\stackrel{\sim}{\infty}$
e. ${ }^{1} \mathrm{H}$, cosy, NOE, ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 6

Wiley-VCH

180	170	160	150	140	130	120	110	100	80	70	60	50	40	30	20	10

Wiley-vch

SUPPORTING INFORMATION

(12)
f. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 7 a

	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{7} \end{aligned}$	\% $\stackrel{0}{0}$ \cdots	

$7 a$

	1	1	1		1	1		1 1 1	1	1	T	1	1		1	1
180	170	160	150	140	130	120	110	$100 \mathrm{f}^{19-(\mathrm{YPP} \uparrow)^{90}}$	80	70	60	50	40	30	20	10

Wiley-vch

g. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 7 b

S-109

Wiley-vch

h. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 7 c

7c

S-113

Wiley-vCh

i. ${ }^{1} \mathrm{H}$, cosy, ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 8 a

Wiley-VCH

8a

	1				1					1	,					
180	170	160	150	140	130	120	110	$100_{\text {f1 }} \mathrm{S}-12090$ f1 (ppm)	80	70	60	50	40	30	20	10

Wiley-vch

Wiley-vch

j. $\quad{ }^{1} \mathrm{H}$, cosy, ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 8 b

$$
\stackrel{n}{n}
$$

$$
\stackrel{\stackrel{\circ}{\tilde{i}}}{i}
$$

8b

S-123

Wiley-vCh

 sf2 (ppm)

Wiley-VCH

WILEY-VCH

SUPPORTING INFORMATION

k. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 9 a

9a

9a

Wiley-vch

SUPPORTING INFORMATION

[^1]I. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 9 b

S-131

$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	受		

$\stackrel{7}{\stackrel{7}{7}}$

9b

Wiley-vch

SUPPORTING INFORMATION

m. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 10

WILEY-VCH

S-135

Wiley-vch

SUPPORTING INFORMATION

n. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 11

Wiley-vCh

	1	1		1	1			1	1	1		1	1		1		1
180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fq} \end{gathered}$	90	80	70	60	50	40	30	20	10

Wiley-vch

o. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 12

Wiley-vch

S-143

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

Wiley-vCh

p. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 13

13

Wiley-VCH

Wiley-VCH

SUPPORTING INFORMATION

A

\circ
$\stackrel{\infty}{0}$
$\stackrel{0}{1}$

~||

13

180	170	160	150	140	130	120	110	108 -149 90	80	70	60	50	40	30	20	10
								f1 (ppm)				50				

Wiley-vch

[^2]q. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 14

Wiley-vch

S-152

Wiley－VCH

SUPPORTING INFORMATION

$\stackrel{\square}{0}$	Fす？	晏	\％	8.
$\stackrel{9}{9}$	を菣等	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	
I	V	1	1	

14

Wiley-vch

SUPPORTING INFORMATION

f1 (ppm)
19.1

.

r. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 15

S-156

Wiley-VCH

Wiley-vch

$\begin{array}{llllllll}119.9 & -120.0 & -120.1 & -120.2 & -120.3 & -120.4 & -120.5 & -120.6\end{array}$ f1 (ppm)
s. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 16

Wiley-VCH

S-160

Wiley-vch

t. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 17

17

S-164
N

Wiley-vch

Wiley-VCH

180	170	160	150													
180	170	160	150	140	130	120	110		80	70	60	50	40	30	20	10

Wiley-vch

v. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 19
(

Wiley-vch

Wiley-vch

w. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 20

	边的的边
11 vV	\V1

20

180	170	160	1	140	130	120	110	1	1	1	1	60	1	40	1	1	10
			150					100	90	80	70		50		30	20	

Wiley-vch

-119.95
$\begin{aligned} & \text { f1 (ppm) }\end{aligned}$
-120.00
-120.05
-120.10

x. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 21

Wiley-VCH

S-178

Wiley-VCH

	1	1		1	1	1			1	1	1	1	1	1	,		1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Wiley-vch

SUPPORTING INFORMATION

y. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 22

Wiley-VCH

	$\underbrace{\substack{\dot{\sigma}}}$	$\stackrel{\text { \% }}{\sim}$	$\underbrace{\overbrace{i}^{\prime}}_{\underbrace{\infty}_{i}}$	人

Wiley-vch

z. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 23

WILEY-VCH

23

S-187

哭		星	O	
1	$\stackrel{\square}{1}$	$\stackrel{1}{1}$		

|ricrin in

180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10

WILEY-VCH

 (

[^3]aa. ${ }^{1} \mathrm{H}, \mathrm{HSQC}, \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 24a

Wiley-vch

SUPPORTING INFORMATION

Wiley-vCh

Wiley-vch

Wiley-vch

SUPPORTING INFORMATION

bb. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{2 4 b}$

WILEY-VCH

SUPPORTING INFORMATION

S-197

Wiley-vch

| | -124.85 | -124.90 | -124.95 | -125.00 | -125.05 | -125.10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | f1 (ppm)

(a)

cc. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 25

葻

S-201

	$\stackrel{\sim}{\sim}$
STV	\|

25

Wiley-vch

SUPPORTING INFORMATION

dd. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 26

Wiley-VCH

Wiley-VCH

SUPPORTING INFORMATION

26

Wiley-vch

SUPPORTING INFORMATION

26

Wiley-vCh

ee. ${ }^{1} \mathrm{H}, \mathrm{HSQC} / \mathrm{HMBC}$ and ${ }^{19}$ F NMR of 27

Wiley-vCh

Wiley-vch

Wiley-vch

(15)

ff. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 28

Wiley-VCH

S-214

		1				1	1		1				1	1		,
180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \mathrm{~S}-21590 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	80	70	60	50	40	30	20	10

gg. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 29

Wiley-VCH

Wiley-VCH

SUPPORTING INFORMATION

Wiley-vch

29

hh. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 30

WILEY-VCH

Wiley-vch

SUPPORTING INFORMATION

 f1 (ppm)
ii. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 1 a}$

Wiley-VCH

S-226

Wiley-vCh

SUPPORTING INFORMATION

jj. ${ }^{1} \mathrm{H}, \mathrm{HSCQ}, \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 31 b

31b

Wiley-vCh

S-230

Wiley-VCH

WILEY-VCH

Wiley-vCh

kk. ${ }^{1} \mathrm{H}, \mathrm{HSCQ}, \mathrm{HMBC}$ and ${ }^{19} \mathrm{~F}$ NMR of 31 c

Wiley-vCh

												M ぶ	H O. O-				
1	T	1	1	,	1	1	,		,	1	1	1	1	1		1	T
-10	-20	-30	-40	-50	-60	-70	-80	$\begin{gathered} 59035 \\ \text { f1 (ppm) } \end{gathered}$	-100	-110	-120	-130	-140	-150	-160	-170	-18C

Wiley-VCH

II. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 35

35

Wiley-VCH

35

mm. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 36

36

Wiley-VCH

36

nn. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR of 39

Wiley-VCH

Wiley-VCH

[^0]: S-88

[^1]: S-129

[^2]:

[^3]:
 S-190

