[en] Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2∆/∆ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2∆/∆ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition.
Altogether, our results indicate that Ship2∆/∆ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.
Agollah, G.D., Gonzalez-Garay, M.L., Rasmussen, J.C., Tan, I.C., Aldrich, M.B., Darne, C., Fife, C.E., Guilliod, R., Maus, E.A., King, P.D., Sevick-Muraka, E.M., Evidence for SH2 domain-containing 5'-inositol phosphatase-2 (SHIP2) contributing to a lymphatic dysfunction. PLoS One, 9, 2014, e112548, 10.1371/journal.pone.0112548.
Artemenko, Y., Gagnon, A., Sorisky, A., Catalytically inactive SHIP2 inhibits proliferation by attenuating PDGF signaling in 3T3-L1 preadipocytes. J. Cell. Physiol. 218 (2009), 228–236.
Bailey, S., Karsenty, G., Gundberg, C., Vashishth, D., Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann. N. Y. Acad. Sci. 1409 (2017), 79–84.
Beemer, F.A., Kozlowski, K.S., Additional case of opsismodysplasia supporting autosomal recessive inheritance. Am. J. Med. Genet. 49 (1994), 344–347.
Below, J.E., Earl, D.L., Shively, K.M., McMillin, M.J., Smith, J.D., Turner, E.H., Stephan, M.J., Al-Gazali, L.I., Hertecant, J.L., Chitayat, D., Unger, S., Cohn, D.H., Krakow, D., Swanson, J.M., Faustman, E.M., Shendure, J., Nickerson, D.A., Bamshad, M.J., Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia. Am. J. Hum. Genet. 92 (2013), 137–143.
Blero, D., De Smedt, F., Pesesse, X., Paternotte, N., Moreau, C., Payrastre, B., Erneux, C., The SH2 domain containing inositol 5-phosphatase SHIP2 controls phosphatidylinositol 3,4,5-trisphosphate levels in CHO-IR cells stimulated by insulin. Biochem. Biophys. Res. Commun. 282 (2001), 839–843.
Cormier-Daire, V., Delezoide, A.L., Philip, N., Marcorelles, P., Casas, K., Hillion, Y., Faivre, L., Rimoin, D.L., Munnich, A., Maroteaux, P., Le Merrer, M. Clinical, radiological, and chondro-osseous findings in opsismodysplasia: survey of a series of 12 unreported cases. J. Med. Genet. 40 (2003), 195–200.
Dubois, E., Jacoby, M., Blockmans, M., Pernot, E., Schiffmann, S.N., Foukas, L.C., Henquin, J.C., Vanhaesebroeck, B., Erneux, C., Schurmans, S., Developmental defects and rescue from glucose intolerance of a catalytically-inactive novel Ship2 mutant mouse. Cell. Signal. 24 (2012), 1971–1980.
Ducy, P., Desbois, C., Boyce, B., Pinero, G., Story, B., Dunstan, C., Smith, E., Bonadio, J., Goldstein, S., Gundberg, C., Bradley, A., Karsenty, G., Increased bone formation in osteocalcin-deficient mice. Nature 382 (1996), 448–452.
Dyson, J.M., Fedele, C.G., Davies, E.M., Becanovic, J., Mitchell, C.A., Phosphoinositide phosphatases: just as important as the kinases. Subcell. Biochem. 58 (2012), 215–279.
Elong Edimo, W., Schurmans, S., Roger, P.P., Erneux, C., SHIP2 signaling in normal and pathological situations: its impact on cell proliferation. Adv Biol Regul 54 (2014), 142–151.
Elong Edimo, W., Ghosh, S., Derua, R., Janssens, V., Waelkens, E., Vanderwinden, J.M., Robe, P., Erneux, C., SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration in 1321 N1 glioblastoma cells. J. Cell Sci. 129 (2016), 1101–1114.
Fafilek, B., Balek, L., Bosakova, M.K., Varecha, M., Nita, A., Gregor, T., Gudernova, I., Krenova, J., Ghosh, S., Piskacek, M., Jonatova, L., Cernohorsky, N.H., Zieba, J.T., Kostas, M., Haugsten, E.M., Wesche, J., Erneux, C., Trantirek, L., Krakow, D., Krejci, P., The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci. Signal., 11(548), 2018, eaap8608, 10.1126/scisignal.aap8608 pii.
Fradet, A., Fitzgerald, J., INPPL1 gene mutations in opsismodysplasia. J. Hum. Genet. 62 (2017), 135–140.
Ghosh, S., Huber, C., Siour, Q., Sousa, S.B., Wright, M., Cormier-Daire, V., Erneux, C., Fibroblasts derived from patients with opsismodysplasia display SHIP2-specific cell migration and adhesion defects. Hum. Mutat. 38 (2017), 1731–1739.
Hoekstra, E., Das, A.M., Willemsen, M., Swets, M., Kuppen, P.J., van derWoude, C.J., Bruno, M.J., Shah, J.P., ten Hagen, T.L.M., Chisholm, J.D., Kerr, W.G., Peppelenbosch, M.P., Fuhler, G.M., Lipid phosphatase SHIP2 functions as oncogene in colorectal cancer by regulating PKB activation. Oncotarget 7 (2016), 73525–73540.
Huber, C., Faqeih, E.A., Bartholdi, D., Bole-Feysot, C., Borochowitz, Z., Cavalcanti, D.P., Frigo, A., Nitschke, P., Roume, J., Santos, H.G., Shalev, S.A., Superti-Furga, A., Delezoide, A.L., Le Merrer, M., Munnich, A., Cormier-Daire, V., Exome sequencing identifies INPPL1 mutations as a cause of opsismodysplasia. Am. J. Hum. Genet. 92 (2013), 144–149.
Iida, A., Okamoto, N., Miyake, N., Nishimura, G., Minami, S., Sugimoto, T., Nakashima, M., Tsurusaki, Y., Saitsu, H., Shiina, M., Ogata, K., Watanabe, S., Ohashi, H., Matsumoto, N., Ikegawa, S., Exome sequencing identifies a novel INPPL1 mutation in opsismodysplasia. J. Hum. Genet. 58 (2013), 391–394.
Jänne, P.A., Suchy, S.F., Bernard, D., MacDonald, M., Crawley, J., Grinberg, A., Wynshaw-Boris, A., Westphal, H., Nussbaum, R.L., Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Investig. 101 (1998), 2042–2053.
Jonason, J.H., Hoak, D., O'Keefe, R.J., Primary murine growth plate and articular chondrocyte isolation and cell culture. Osteoporosis and osteoarthritis. Methods Mol. Biol. 1226 (2015), 11–18.
Jurynec, M.J., Grunwald, D.J., SHIP2, a factor associated with diet-induced obesity and insulin sensitivity, attenuates FGF signaling in vivo. Dis Model Mech 3 (2010), 733–742.
Kagawa, S., Sasaoka, T., Yaguchi, S., Ishiara, H., Tsuneki, H., Murakami, S., Fukui, K., Wada, T., Kobayashi, S., Kimura, I., Kobayashi, M., Impact of SRC homology 2-containing inositol 5’-phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling. J. Clin. Endocrinol. Metab. 90 (2005), 2911–2919.
Komori, T., Signaling networks in RUNX2-dependent bone development. J. Cell. Biochem. 112 (2011), 750–755.
Maroteaux, P., Stanescu, V., Stanescu, R., Le Marec, B., Moraine, C., Lejarraga, H., Opsismodysplasia: a new type of chondrodysplasia with predominant involvement of the bones of the hand and the vertebrae. Am. J. Med. Genet. 19 (1984), 171–182.
Muraille, E., Dassesse, D., Vanderwinden, J.M., Cremer, H., Rogister, B., Erneux, C., Schiffmann, S.N., The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice. Neuroscience 105 (2001), 1019–1030.
Murakami, S., Balmes, G., McKinney, S., Zhang, Z., Givol, D., de Crombrugghe, B., Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 18 (2004), 290–305.
Murshed, M., Schinke, T., McKee, M.D., Karsenty, G., Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J. Cell Biol. 165 (2004), 625–630.
Peng, X.D., Xu, P.Z., Chen, M.L., Hahn-Windgassen, A., Skeen, J., Jacobs, J., Sundararajan, D., Chen, W.S., Crawford, S.E., Coleman, K.G., Hay, N. Dwarfism, Impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 17 (2003), 1352–1365.
Ramos, A.R., Elong Edimo, W., Erneux, C., Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul 67 (2018), 40–48.
Ramos, A.R., Ghosh, S., Erneux, C., The impact of phosphoinositide 5-phosphatases on phosphoinositides in cell function and human disease. J. Lipid Res. 60 (2019), 276–286.
Readinger, J.A., Mueller, K.L., Venegas, A.M., Horai, R., Schwartzberg, P.L., Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol. Rev. 228 (2009), 93–114.
Sasaoka, T., Kikuchi, K., Wada, T., Sato, A., Hori, H., Murakami, S., Fukui, K., Ishihara, H., Aota, R., Kimura, I., Kobayashi, M., Dual role of SRC homology domain 2-containing inositol phosphatase 2 in the regulation of platelet-derived growth factor and insulin-like growth factor I signaling in rat vascular smooth muscle cells. Endocrinology 144 (2003), 4204–4214.
Schurmans, S., Carrió, R., Behrends, J., Pouillon, V., Merino, J., Clément, S., The mouse SHIP2 (Inppl1) gene: complementary DNA, genomic structure, promoter analysis, and gene expression in the embryo and adult mouse. Genomics 62 (1999), 260–271.
Seriwatanachai, D., Krishnamra, N., Charoenphandhu, N., Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures. Biochem. Biophys. Res. Commun. 420 (2012), 108–113.
Sharma, P.M., Son, H.S., Ugi, S., Ricketts, W., Olefsky, J.M., Mechanism of SHIP-mediated inhibition of insulin- and platelet-derived growth factor-stimulated mitogen-activated protein kinase activity in 3T3-L1 adipocytes. Mol. Endocrinol. 19 (2005), 421–430.
Sleeman, M.W., Wortley, K.E., Lai, K.M., Gowen, L.C., Kintner, J., Kline, W.O., Garcia, K., Stitt, T.N., Yancopoulos, G.D., Wiegand, S.J., Glass, D.J., Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med. 11 (2005), 199–205.
Su, N., Du, X., Chen, L., FGF signaling: its role in bone development and human skeleton diseases. Front. Biosci. 13 (2008), 2842–2865.
Su, N., Sun, Q., Li, C., Lu, X., Qi, H., Chen, S., Yang, J., Du, X., Zhao, L., He, Q., Jin, M., Shen, Y., Chen, D., Chen, L., Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum. Mol. Genet. 19 (2010), 1199–1210.
Suwa, A., Kurama, T., Shimokawa, T., SHIP2 and its involvement in various diseases. Expert Opin. Ther. Targets 14 (2010), 727–737.
Thirion, S., Berenbaum, F., Culture and phenotyping of chondrocytes in primary culture. Methods Mol. Med. 100 (2004), 1–14.
Thomas, M.P., Erneux, C., Potter, B.V., SHIP2: structure, function and inhibition. Chembiochem 18 (2017), 233–247.
Tridandapani, S., Kelley, T., Cooney, D., Pradhan, M., Coggeshall, K.M., Negative signaling in B cells: SHIP grbs Shc. Immunol. Today 18 (1997), 424–427.
Tyler, K., Sarioglu, N., Kunze, J., Five familial cases of opsismodysplasia substantiate the hypothesis of autosomal recessive inheritance. Am. J. Med. Genet. 83 (1999), 47–52.
Ulici, V., Hoenselaar, K.D., Agoston, H., McErlain, D.D., Umoh, J., Chakrabarti, S., Holdsworth, D.W., Beier, F., The role of Akt1 in terminal stages of endochondral bone formation: angiogenesis and ossification. Bone 45 (2009), 1133–1145.
Wang, Y., Menendez, A., Fong, C., ElAlieh, H.Z., Chang, W., Bikle, D.D., Ephrin B2/EphB4 mediates the actions of IGF-I signaling in regulating endochondral bone formation. J. Bone Miner. Res. 29 (2014), 1900–1913.