[en] Entropy is a fundamental thermodynamic quantity that is a measure of the accessible microstates available to a system, with the stability of a system determined by the magnitude of the total entropy of the system. This is valid across truly mind boggling length scales, from nanoparticles to galaxies. However, quantitative measurements of entropy change using calorimetry are predominantly macroscopic, with direct atomic-scale measurements being exceedingly rare. Here, we experimentally quantify the polar configurational entropy (in meV/K) using sub-angstrom resolution aberration corrected scanning transmission electron microscopy in a single crystal of the prototypical ferroelectric LiNbO3 through the quantification of the niobium and oxygen atom column deviations from their paraelectric positions. Significant excursions of the niobium-oxygen polar displacement away from its symmetry-constrained direction are seen in single domain regions which increase in the proximity of domain walls. Combined with first-principles theory plus mean field effective Hamiltonian methods, we demonstrate the variability in the polar order parameter, which is stabilized by an increase in the magnitude of the configurational entropy. This study presents a powerful tool to quantify entropy from atomic displacements and demonstrates its dominant role in local symmetry breaking at finite temperatures in classic, nominally Ising ferroelectrics.
Research Center/Unit :
PhyTheMa
Disciplines :
Physics
Author, co-author :
Mukherjee, Debangshu; The Pennsylvania State University > Department of Materials Science and Engineering
Prokhorenko, Sergei ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Miao, Leixin; The Pennsylvania State University > Department of Materials Science and Engineering
Wang, Ke; The Pennsylvania State University > Materials Research Institute > Materials Characterization Laboratory
Bousquet, Eric ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Gopalan, Venkatraman; The Pennsylvania State University > Department of Materials Science and Engineering
Alem, Nasim; The Pennsylvania State University > Department of Materials Science and Engineering
Language :
English
Title :
Atomic-scale measurement of polar entropy
Publication date :
03 September 2019
Journal title :
Physical Review. B, Condensed Matter
ISSN :
0163-1829
eISSN :
1095-3795
Publisher :
American Physical Society, United States - Maryland
Volume :
100
Pages :
104102
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWB - Fédération Wallonie-Bruxelles
Funding text :
Céci facilities funded by F.R.S-FNRS (Grant No. 2.5020.1) and Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No. 1117545)
J. W. Gibbs, On the equilibrium of heterogeneous substances, Am. J. Sci. 96, 441 (1878). 10.2475/ajs.s3-16.96.441
J. J. Christensen, R. M. Izatt, L. D. Hansen, and J. A. Partridge, Entropy titration. a calorimetric method for the determination of (Equation presented), and (Equation presented) from a single thermometric (Equation presented), J. Phys. Chem. 70, 2003 (1966). JPCHAX 0022-3654 10.1021/j100878a049
Physics of Ferroelectrics: A Modern Perspective, edited by K. M. Rabe, C. H. Ahn, and J.-M. Triscone (Springer, Berlin, 2007).
C. T. Nelson, B. Winchester, Y. Zhang, S.-J. Kim, A. Melville, C. Adamo, C. M. Folkman, S.-H. Baek, C.-B. Eom, D. G. Schlom, Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces, Nano Lett. 11, 828 (2011). NALEFD 1530-6984 10.1021/nl1041808
K. Kimoto, T. Asaka, X. Yu, T. Nagai, Y. Matsui, and K. Ishizuka, Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy, Ultramicroscopy 110, 778 (2010). ULTRD6 0304-3991 10.1016/j.ultramic.2009.11.014
S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, and E. K. H. Salje, Direct observation of ferrielectricity at ferroelastic domain boundaries in (Equation presented) by electron microscopy, Adv. Mater. 24, 523 (2012). ADVMEW 0935-9648 10.1002/adma.201103717
A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S. I. Sanchez, S. A. Bradley, A. Li, I. Szlufarska, and P. M. Voyles, Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts, Nat. Commun. 5, 4155 (2014). 2041-1723 10.1038/ncomms5155
B. H. Savitzky, I. El Baggari, A. S. Admasu, J. Kim, S.-W. Cheong, R. Hovden, and L. F. Kourkoutis, Bending and breaking of stripes in a charge ordered manganite, Nat. Commun. 8, 1883 (2017). 2041-1723 10.1038/s41467-017-02156-1
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977).
A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic crystals and Thin Films (Springer, New York, 2010).
G. Catalan, J. Seidel, R. Ramesh, and J. F Scott, Domain wall nanoelectronics, Rev. Mod. Phys. 84, 119 (2012). RMPHAT 0034-6861 10.1103/RevModPhys.84.119
V. Gopalan, V. Dierolf, and D. A. Scrymgeour, Defect-domain wall interactions in trigonal ferroelectrics, Annu. Rev. Mater. Res. 37, 449 (2007). ARMRCU 1531-7331 10.1146/annurev.matsci.37.052506.084247
E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Y. Shur, Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors, Phys. Rev. B 83, 235313 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.83.235313
T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, Free-electron gas at charged domain walls in insulating (Equation presented), Nat. Commun. 4, 1808 (2013). 2041-1723 10.1038/ncomms2839
D. Lee, R. K. Behera, P. Wu, H. Xu, Y. L. Li, S. B. Sinnott, S. R. Phillpot, L. Q. Chen, and V. Gopalan, Mixed Bloch-Néel-Ising character of (Equation presented) ferroelectric domain walls, Phys. Rev. B 80, 060102 (R) (2009). PRBMDO 1098-0121 10.1103/PhysRevB.80.060102
Y. J. Wang, D. Chen, Y. L. Tang, Y. L. Zhu, and X. L. Ma, Origin of the Bloch-type polarization components at the (Equation presented) domain walls in ferroelectric (Equation presented), J. Appl. Phys. 116, 224105 (2014). JAPIAU 0021-8979 10.1063/1.4904192
X.-K. Wei, C.-L. Jia, T. Sluka, B.-X. Wang, Z.-G. Ye, and N. Setter, Néel-like domain walls in ferroelectric (Equation presented) single crystals, Nat. Commun. 7, 12385 (2016). 2041-1723 10.1038/ncomms12385
J. C. Wojdeł and J. Iniguez, Ferroelectric Transitions at Ferroelectric Domain Walls Found from First Principles, Phys. Rev. Lett. 112, 247603 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.247603
T. Matsumoto, R. Ishikawa, T. Tohei, H. Kimura, Q. Yao, H. Zhao, X. Wang, D. Chen, Z. Cheng, N. Shibata, Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal (Equation presented) single crystal visualized by a spherical aberration-corrected stem, Nano Lett. 13, 4594 (2013). NALEFD 1530-6984 10.1021/nl402158c
Y.-M. Kim, S. J. Pennycook, and A. Y. Borisevich, Quantitative comparison of bright field and annular bright field imaging modes for characterization of oxygen octahedral tilts, Ultramicroscopy 181, 1 (2017). ULTRD6 0304-3991 10.1016/j.ultramic.2017.04.020
Q. He, R. Ishikawa, A. R. Lupini, L. Qiao, E. J. Moon, O. Ovchinnikov, S. J. May, M. D. Biegalski, and A. Y. Borisevich, Towards 3D mapping of (Equation presented) octahedron rotations at perovskite heterointerfaces, unit cell by unit cell, ACS Nano 9, 8412 (2015). 1936-0851 10.1021/acsnano.5b03232
T. Malis, S. C. Cheng, and R. F. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech. 8, 193 (1988). JEMTEC 0741-0581 10.1002/jemt.1060080206
A. Jain, S. Ping Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013). 2166-532X 10.1063/1.4812323
J. Gonnissen, D. Batuk, G. F. Nataf, L. Jones, A. M. Abakumov, S. Van Aert, D. Schryvers, and E. K. H. Salje, Direct observation of ferroelectric domain walls in (Equation presented): Wall-meanders, kinks, and local electric charges, Adv. Funct. Mater. 26, 7599 (2016). 1616-301X 10.1002/adfm.201603489
D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate, Phys. Rev. B 71, 184110 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.71.184110
M. Veithen and Ph. Ghosez, First-principles study of the dielectric and dynamical properties of lithium niobate, Phys. Rev. B 65, 214302 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.65.214302
J. Goldstone, Field theories with superconductor solutions, Il Nuovo Cimento (1955-1965) 19, 154 (1961). NUCIAD 0029-6341 10.1007/BF02812722
P. W. Higgs, Broken Symmetries and The Masses of Gauge Bosons, Phys. Rev. Lett. 13, 508 (1964). PRLTAO 0031-9007 10.1103/PhysRevLett.13.508
P. Županović and D. Kuić, Relation between Boltzmann and Gibbs entropy and example with multinomial distribution, J. Phys. Commun. 2, 045002 (2018). 2399-6528 10.1088/2399-6528/aab7e1
G. Stone, C. Ophus, T. Birol, J. Ciston, C.-H. Lee, K. Wang, C. J. Fennie, D. G Schlom, N. Alem, and V. Gopalan, Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide, Nat. Commun. 7, 12572 (2016). 2041-1723 10.1038/ncomms12572
G. A. Smolenskii, N. N. Krainik, N. P. Khuchua, V. V. Zhdanova, and I. E. Mylnikova, The Curie Temperature of (Equation presented), Phys. Status Solidi B 13, 309 (1966). PSSBBD 0370-1972 10.1002/pssb.19660130202
S. Kim, V. Gopalan, and A. Gruverman, Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate, Appl. Phys. Lett. 80, 2740 (2002). APPLAB 0003-6951 10.1063/1.1470247
H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Investigation of ferroelectric coercive field in (Equation presented), Appl. Phys. A: Mater. Sci. Process. 65, 437 (1997). APAMFC 0947-8396 10.1007/s003390050605
A. Filippetti, P. Delugas, M. I. Saba, and A. Mattoni, Entropy-suppressed ferroelectricity in hybrid lead-iodide perovskites, J. Phys. Chem. Lett. 6, 4909 (2015). 1948-7185 10.1021/acs.jpclett.5b02117
R. Pirc, B. RoŽič, Z. Kutnjak, R. Blinc, X. Li, and Q. M. Zhang, Electrocaloric effect and dipolar entropy change in ferroelectric polymers, Ferroelectrics 426, 38 (2012). FEROA8 0015-0193 10.1080/00150193.2012.671101
G. G. Guzmán-Verri and P. B. Littlewood, Why is the electrocaloric effect so small in ferroelectrics? APL Mater. 4, 064106 (2016). 2166-532X 10.1063/1.4950788
M. Porta, T. Lookman, and A. Saxena, Effects of criticality and disorder on piezoelectric properties of ferroelectrics, J. Phys.: Condens. Matter 22, 345902 (2010). JCOMEL 0953-8984 10.1088/0953-8984/22/34/345902
B. N. Rao, R. Datta, S. S. Chandrashekaran, D. K. Mishra, V. Sathe, A. Senyshyn, and R. Ranjan, Local structural disorder and its influence on the average global structure and polar properties in (Equation presented), Phys. Rev. B 88, 224103 (2013). 10.1103/PhysRevB.88.224103
M. Schaffer, B. Schaffer, and Q. Ramasse, Sample preparation for atomic-resolution STEM at low voltages by FIB, Ultramicroscopy 114, 62 (2012). ULTRD6 0304-3991 10.1016/j.ultramic.2012.01.005
L. A. Giannuzzi, Reducing FIB damage using low energy ions, Microsc. Microanal. 12, 1260 (2006). 1431-9276 10.1017/S1431927606065469
J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, TEM sample preparation and FIB-induced damage, MRS Bull. 32, 400 (2007). MRSBEA 0883-7694 10.1557/mrs2007.63
T. Grieb, M. Tewes, M. Schowalter, K. Müller-Caspary, F. F. Krause, T. Mehrtens, J.-M. Hartmann, and A. Rosenauer, Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation, Ultramicroscopy 184, 29 (2018). ULTRD6 0304-3991 10.1016/j.ultramic.2017.09.012
M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, and L. F. Kourkoutis, Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries, Nature (London) 560, 345 (2018). NATUAS 0028-0836 10.1038/s41586-018-0397-3
C. Ophus, J. Ciston, and C. T. Nelson, Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions, Ultramicroscopy 162, 1 (2016). ULTRD6 0304-3991 10.1016/j.ultramic.2015.12.002
O. Tikhomirov, H. Jiang, and J. Levy, Local Ferroelectricity in (Equation presented) Thin Films, Phys. Rev. Lett. 89, 147601 (2002). PRLTAO 0031-9007 10.1103/PhysRevLett.89.147601
S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, Ferroelectric lithium niobate. 3. single crystal x-ray diffraction study at (Equation presented), J. Phys. Chem. Solids 27, 997 (1966). JPCSAW 0022-3697 10.1016/0022-3697(66)90072-2
W. H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62, 55 (1972). JOSAAH 0030-3941 10.1364/JOSA.62.000055
L. B. Lucy, An iterative technique for the rectification of observed distributions, Astron. J. 79, 745 (1974). ANJOAA 0004-6256 10.1086/111605
X. Gonze, F. Jollet, F. A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, Recent developments in the ABINIT software package, Comput. Phys. Commun. 205, 106 (2016). CPHCBZ 0010-4655 10.1016/j.cpc.2016.04.003
E. K. U. Gross and R. M. Dreizler, Density Functional Theory, Vol. 337 (Springer, New York, 2013).
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964). PHRVAO 0031-899X 10.1103/PhysRev.136.B864
X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180, 2582 (2009). CPHCBZ 0010-4655 10.1016/j.cpc.2009.07.007
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, 136406 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.136406
M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Libxc: A library of exchange and correlation functionals for density functional theory, Comput. Phys. Commun. 183, 2272 (2012). CPHCBZ 0010-4655 10.1016/j.cpc.2012.05.007
M. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018). 10.1016/j.cpc.2018.01.012
D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.085117
F. Casas, A. Murua, and M. Nadinic, Efficient computation of the Zassenhaus formula, Comput. Phys. Commun. 183, 2386 (2012). CPHCBZ 0010-4655 10.1016/j.cpc.2012.06.006
H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976). 0556-2805 10.1103/PhysRevB.13.5188
I. Tomeno and S. Matsumura, Elastic and dielectric properties of (Equation presented), J. Phys. Soc. Jpn. 56, 163 (1987). JUPSAU 0031-9015 10.1143/JPSJ.56.163
H. Boysen and F. Altorfer, A neutron powder investigation of the higherature structure and phase transition in (Equation presented), Acta Crystallogr., Sect. B: Struct. Sci. 50, 405 (1994). ASBSDK 0108-7681 10.1107/S0108768193012820
H. D. Megaw, A note on the structure of lithium niobate, (Equation presented), Acta Crystallogr., Sect. A 24, 583 (1968). ACACBN 0567-7394 10.1107/S0567739468001282
M. A. O'Keefe and R. Kilaas, Advances in high-resolution image simulation, Scanning Microsc. Suppl. 2, 225 (1988).