Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Bastos, G.J.: Contribution to the inverse dynamics of flexible manipulators. Ph.D. thesis, University of Liège (2013)
Bastos, G.J., Seifried, R., Brüls, O.: Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst. Dyn. 30, 359–376 (2013). 10.1007/s11044-013-9361-z
Bastos, G.J., Seifried, R., Brüls, O.: Analysis of stable model inversion methods for constrained underactuated mechanical systems. Mech. Mach. Theory 111, 99–117 (2017)
Bauchau, O.: Flexible Multibody Dynamics. Springer, Berlin (2011)
Betts, J.T.: Practical Method for Optimal Control and Estimation Using Nonlinear Programming. Advances in Design and Control. SIAM, Philadelphia (2010)
Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11, 343–364 (2004)
Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robot. Res. 3(3), 87–101 (1984)
Bottasso, C.L., Croce, A.: Optimal control of multibody systems using an energy preserving direct transcription method. Multibody Syst. Dyn. 12, 17–45 (2004)
Bottasso, C.L., Croce, A., Ghezzi, L., Faure, P.: On the solution of inverse dynamics and trajectory optimization problems for multibody systems. Multibody Syst. Dyn. 11, 1–22 (2004)
Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC, USA (2011)
Brüls, O., Bastos, G.J., Seifried, R.: A stable inversion method for feedforward control of constrained flexible multibody systems. J. Comput. Nonlinear Dyn. 9, 011014 (2014). 10.1115/1.4025476
Brüls, O., Cardona, A., Arnold, M.: Lie group generalized- α time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)
Cannon, R., Schmitz, E.: Initial experiments on the end-point control of a flexible one-link robot. Int. J. Robot. Res. 3(3), 62–75 (1984)
De Luca, A.: Feedforward/feedback laws for the control of flexible robots. In: Proceedings of the IEEE International Conference on Robotics & Automation (2000)
Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)
Franke, R., Malzahn, J., Nierobisch, T., Hoffmann, F., Bertram, T.: Vibration control of a multi-link flexible robot arm with fiber-Bragg-grating sensors. In: Proceedings of IEEE International Conference on Robotics and Automation (2009)
Geradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, New York (2001)
Kwon, D.S., Book, W.J.: A time-domain inverse dynamic tracking control of a single link flexible manipulator. J. Dyn. Syst. Meas. Control 116, 193–200 (1994)
Lismonde, A., Sonneville, V., Brüls, O.: Trajectory planning of soft link robots with improved intrinsic safety. In: Proceedings of the 20th World Congress of the International Federation of Automatic Control (2017)
Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge (2017)
Malzahn, J., Ruderman, M., Phung, A.S., Hoffmann, F., Bertram, T.: Input shaping and strain gauge feedback vibration control of an elastic robotic arm. In: Proceedings of IEEE Conference on Control and Fault Tolerant Systems (2010)
Manara, S., Gabiccini, M., Artoni, A., Diehl, M.: On the integration of singularity-free representations of SO(3) for direct optimal control. Nonlinear Dyn. 90(2), 1223–1241 (2017)
Martins, J., Botto, M.A., Costa, J.S.D.: Modeling of flexible beams for robotic manipulators. Multibody Syst. Dyn. 7, 79–100 (2002)
Moberg, S.: Modeling and control of flexible manipulators. Ph.D. thesis, Linköping University (2010)
Moberg, S., Hanssen, S.: Inverse dynamics of flexible manipulators. In: Proceedings of the Multibody Dynamics, ECCOMAS Thematic Conference (2009)
Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)
Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design. Solid Mechanics and Its Applications. Springer, Berlin (2014)
Seifried, R., Eberhard, P.: Design of feed-forward control for underactuated multibody systems with kinematic redundancy. In: Motion and Vibration Control: Selected Papers from MOVIC 2008 (2009)
Singer, N., Seering, W.P.: Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Control 112, 76–82 (1990). 10.1115/1.2894142
Solis, J.F.P., Navarro, G.S., Linares, R.C.: Modeling and tip position control of a flexible link robot: experimental results. Comput. Sist. 12(4), 421–435 (2009)
Sonneville, V.: A geometric local frame approach for flexible multibody systems. Ph.D. thesis, University of Liège (2015)
Sonneville, V., Brüls, O.: A formulation on the special Euclidean group for dynamic analysis of multibody systems. J. Comput. Nonlinear Dyn. 9, 041002 (2014). 10.1115/1.4026569
Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014). 10.1016/j.cma.2013.10.008
Staufer, P., Gattringer, H.: Passivity-based tracking control of a flexible link robot. In: Multibody System Dynamics, Robotic and Control, pp. 95–112. Springer, Vienna (2013)