Paper published in a book (Scientific congresses and symposiums)
Characterisation of fungal diseases on winter wheat crop using proximal and remote multispectral imaging
Bebronne, Romain; Michez, Adrien; Leemans, Vincent et al.
2019In Precision agriculture ’19
Peer reviewed
 

Files


Full Text
ECPA - Révisé - Sans modif.docx
Author preprint (701.34 kB)
Request a copy

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned. Nothing from this publication may be translated, reproduced, stored in a computerised system or published in any form or in any manner, including electronic, mechanical, reprographic or photographic, without prior written permission from the publisher: Wageningen Academic Publishers P.O. Box 220 6700 AE Wageningen The Netherlands www.WageningenAcademic.com copyright@ WageningenAcademic.com. The individual contributions in this publication and any liabilities arising from them remain the responsibility of the authors.The publisher is not responsible for possible damages, which could be a result of content derived from this publication.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Wheat; Fungal diseases; unmanned aerial vehicle sensing; multispectral; proximal sensing
Abstract :
[en] Winter wheat fungal diseases, responsible for high yield losses, can be assessed by computer vision to increase phenotyping performance. This study aims to compare multispectral imagery based on remote and proximal sensing for disease detection. Wavelength selection was achieved by ANOVA and stepwise regression. Prediction of disease severity was performed by means of an artificial neural network based on proximal sensing data. If septoria requires proximal measurements, stripe and brown rusts can be detected from UAVs and early detection from the ground. Prediction results obtained gave R² of 0.55 and 0.57 for septoria tritici blotch and stripe rust respectively.
Research Center/Unit :
Terra Research and Teaching Centre
Disciplines :
Agriculture & agronomy
Author, co-author :
Bebronne, Romain ;  Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Michez, Adrien  ;  Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Leemans, Vincent ;  Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Dumont, Benjamin  ;  Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Vermeulen, Philippe;  Centre wallon de recherches agronomiques > Valorisation des produits agricoles > Qualité des produits
Mercatoris, Benoît  ;  Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Language :
English
Title :
Characterisation of fungal diseases on winter wheat crop using proximal and remote multispectral imaging
Publication date :
08 July 2019
Event name :
The 12th European Conference on Precision Agriculture
Event organizer :
Montpellier SupAgro
Event place :
Montpellier, France
Event date :
du 8 juillet 2019 au 11 juillet 2019
Audience :
International
Main work title :
Precision agriculture ’19
Publisher :
Wageningen Academic Publishers, Wageningen, Netherlands
ISBN/EAN :
978-90-8686-337-2
Pages :
255-261
Peer reviewed :
Peer reviewed
Name of the research project :
Project D31-1385
Funders :
SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement
Available on ORBi :
since 03 September 2019

Statistics


Number of views
119 (20 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi