Determination of the natural radioactivity, elemental composition and geological provenance of sands from Douala in the littoral region of Cameroon using X-ray and γ-ray spectrometry
Guembou, Joel Cebastien Shouop; Ndontchueng, Maurice Moyo; Nguelem, Jilbert Eric Mekongtsoet al.
[en] This study aimed to determine the concentration of natural radionuclides, the chemical composition, and the geological provenance of sand samples from seven large quarries within the Douala Basin and surrounding locations within the Littoral Region of Cameroon along the Gulf of Guinea. The analyses were undertaken on a total of 24 samples, using both gamma- and X-ray spectrometry techniques. Gamma spectrometric results indicated that the samples from the study area contained amounts of natural radioactivity that are less than the globally agreed safe limits. X-ray fluorescence spectrometry yielded quantitative major, minor, and trace element concentrations that were used in tectonic discrimination diagrams, indicating that these sediments were deposited in a passive margin environment. These concentration and natural radionuclide radioactivity level data provide a reference database for this region of Cameroon as well as for the wider Gulf of Guinea.
Disciplines :
Physics Earth sciences & physical geography
Author, co-author :
Guembou, Joel Cebastien Shouop
Ndontchueng, Maurice Moyo
Nguelem, Jilbert Eric Mekongtso
Chene, Grégoire ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et nucléaire, archéométrie
Motapon, Ousmanou
Kayo, Styve Arnol
Strivay, David ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et nucléaire, archéométrie
Language :
English
Title :
Determination of the natural radioactivity, elemental composition and geological provenance of sands from Douala in the littoral region of Cameroon using X-ray and γ-ray spectrometry
Ababneh AM, Eyadeh MM., 2015. Coincidence summing corrections in HPGe gamma-ray spectrometry for Marinelli-beakers geometry using peak to total (P/T) calibration. J Radiat Res Appl Sci. 8:323–327. doi:10.1016/j.jrras.2015.05.003.
Anani C, Moradeyo M, Atta-Peters D, Kutu J, Asiedu D, Boamah D., 2013. Geochemistry and provenance of sandstones from Anyaboni and surrounding areas in the voltaian basin, Ghana. Int Res J Geol Min (2276–6618). 3(6):206–212.
Aoun M, El Samad O, Bou Khozam R, Lobinski R., 2015. Assessment of committed effective dose due to the ingestion of 210Po and 210Pb in consumed Lebanese fish affected by a phosphate fertilizer plant. J Environ Radioact. 140:25–29. doi:10.1016/j.jenvrad.2014.10.014.
Beretka J, Mathew PJ., 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48:87–95. doi: 10.1097/00004032-198501000-00007
Bhatia MR., 1983. Plate tectonics and geochemical composition of sandstones. J Geol. 91:611–627. doi: 10.1086/628815
Bhatia MR., 1985a. Plate tectonics and geochemical composition of sandstones: a reply. J Geol. 93(1):85–87. doi: 10.1086/628922
Bhatia MR., 1985b. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sediment Geol. 45:97–113. doi: 10.1016/0037-0738(85)90025-9
Bhatia MR, Crook KAW., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol. 92:181–193. doi: 10.1007/BF00375292
Bruker. 2015b. XRF lab report–S8 TIGER plus GEO-QUANT M.
Caldeira R, Munha JM., 2002. Petrology of ultramafic nodules from Sao Tome Island, Cameroon Volcanic Line (oceanic sector). J Afr Earth Sci. 34:231–246. doi: 10.1016/S0899-5362(02)00022-2
Caridi F, Marguccio S, Belvedere A, Belmusto G., 2015. Measurements of gamma radioactivity in river sediment samples of the Mediterranean Central Basin. Am J Condens Matter Phys. 5(3):61–68.
Caridi F, Marguccio S, Belvedere A, Belmusto G, Marcianò G, Sabatino G, Mottese A., 2016. Natural radioactivity and elemental composition of beach sands in the Calabria region, south of Italy. Environ Earth Sci. 75. doi:10.1007/s12665-016-5393-z.
Chris A, Moradeyo M, Atta-Peters D, Kutu J, Asiedu D, Boamah D., 2013. Geochemistry and provenance of sandstones from Anyaboni and surrounding areas in the voltaian basin, Ghana. Int Res J Geol Min (2276–6618). 3(6):206–212.
Déruelle B, Ngounouno I, Demaiffe D., 2007. The Cameroon Hot Line (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. Comptes Rendus Géosciences. 339:589–600. doi: 10.1016/j.crte.2007.07.007
Duchesne J-C, Bologne G., 2009. XRF major and trace element determination in Fe-Ti oxide minerals 8. Geol Belg. 12(3/4):205–212.
Enzweiler J, Webb PC., 1996. Determination of trace elements in silicate rocks by X-ray fluorescence spectrometry on 1:5 glass disks: comparison of accuracy and precision with pressed powder pellet analysis. Chem Geol. 130:195–202. doi: 10.1016/0009-2541(96)00022-8
Fitton JG., 1987. The Cameroon line-West Africa: a comparison between oceanic and continental alkaline volcanism. Géol Soc Spec Publ. 30:273–291. doi: 10.1144/GSL.SP.1987.030.01.13
Gaudru H, Tchouankoue JP., 2002. The 1999 Eruption of Mt. Cameroon, West Africa. Co Geo Environment Newsl. 18:12–14.
Genie-2000 Spectroscopy Software. 2006. Canberra Industries, 800 Research Parkway, Meriden, Canberra’s True Coincidence Summing Correction for Radiation Detectors is covered by US Patent 6,225,634. http://www.canberra.com.
Govindaraju K., 1994. Compilation of working values and sample description for 383 geostandards. Geostand Newsl. 18:1–158. doi: 10.1111/j.1751-908X.1994.tb00502.x
Guembou Shouop CJ, Ndontchueng Moyo M, Chene G, Nguelem Mekontso EJ, Motapon O, Kayo SA, Strivay D., 2017. Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral Region of Cameroon, using gamma spectrometry. Environ Earth Sci. 76. doi:10.1007/s12665-017-6474-3.
Gupta M, Chauhan RP, Garg A, Kumar S, Sonkawade RG., 2010. Estimation of radioactivity in some sand and soil samples. Indian J Pure Appl Phys. 48:482–485.
Gupta N, Bhattacharyya DP., 2001. Muons from gamma-rays of Markarian 501. Phys Lett B. 514:321–329. doi:10.1016/S0370-2693(01)00820-6.
Halliday AN, Davidson JP, Holden P, DeWolf C, Lee DC, Fitton JG., 1990. Trace element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon line. Nature. 347:523–528. doi: 10.1038/347523a0
Hazou E, Guembou Shouop CJ, Nguelem Mekongtso EJ, Ndontchueng Moyo M, Beyala Ateba JF, Tchakpele PK., 2019. Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo. Radiat Detect Technol Methods. 3:16. doi:10.1007/s41605-018-0091-x.
Herron MM., 1988. Geochemical classification of terrigeneous sands and shales from core or log data. J Sediment Petrol. 58:820–829.
IAEA Vol. 2. 2007. Update of X-Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Application- Data Selection, Assessment and Evaluation Procedures.
Joel GSC, Penabei S, Maurice NM, Gregoire C, Jilbert NME, Didier TS, David S., 2017a. Optimal measurement counting time and statistics in gamma spectrometry analysis: the time balance. AIP Conf Proc. 1792:100001. doi:10.1063/1.4969040.
Joel GSC, Penabei S, Ndontchueng MM, Chene G, Mekontso EJN, Ebongue AN, Ousmanou M, David S., 2017b. Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: application to the soil measurement. MethodsX. 4:42–54. doi:10.1016/j.mex.2016.12.003.
Kalsbeek F, Frei D, Affaton P., 2008. Constraints on provenance, stratigraphic correlation and structural context of the Volta Basin, Ghana, from Detrital Zircon Geo-chronology: an Amazonian connection? J Sediment Geol. 212:86–95. doi: 10.1016/j.sedgeo.2008.10.005
Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Tongwa AT., 2001. The Cameroon Volcanic Line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J Petrol. 41:87–109. doi: 10.1093/petrology/41.1.87
McLennan SM, Taylor SR, Eriksson KA., 1983. Geochemistry of Archaeanshales from the Pilbara Supergroup, Western Australia. Geochimicaet Cosmochimica Acta. 47(7):1211–1222. doi: 10.1016/0016-7037(83)90063-7
Mori Y, Mashima H., 2005. X-ray fluorescence analysis of major and trace elements in silicate rocks using 1:5 dilution glass beads. Bull Kitakyushu Mus Nat Hist Hum Hist, Ser A. 3:1–12.
Mori Y, Nishiyama T, Yanagi T., 2007. Chemical mass balance in a reaction zone between serpentinite and metapelites in the Nishisonogi metamorphic rocks, Kyushu, Japan: Implications for devolatilization. Island Arc. 16:28–39. doi: 10.1111/j.1440-1738.2007.00556.x
Nath BN, Kunzendorf H, Pluger WL., 2000. Influence of provenance, weathering and sedimentary processes on the elemental ratio of the fine-grained fraction of the bed load sediments from the Vembanad Lake and the adjoining continental shelf, southwest Coast of India. J Sediment Res. 70:1081–1094. doi: 10.1306/100899701081
Navas A, Soto J, Machín J., 2002. 238U, 226ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). Appl Radiat Isot 57:579–589. doi:10.1016/S0969-8043(02)00131-8.
Ndontchueng MM, Mekongtso Nguelem EJ, Simo A, Njinga RL, Joël GSC., 2014. Gamma emitting radionuclides in soils from selected areas in Douala-Bassa Zone, littoral region of Cameroon. ISRN Spectrosc. 2014:1–8. doi:10.1155/2014/245125.
Ndontchueng MM, Nguelem E, Motapon O, Njinga R, Simo A, Guembou J, Yimele B., 2015. Radiological hazards in soil from the bauxite deposits sites in Dschang Region of Cameroon. Br J Appl. Sci Technol. 5:342–352. doi:10.9734/BJAST/2015/13352.
Ndontchueng MM, Njinga RL, Nguelem EJM, Simo A, Beyala Ateba JF., 2014. 238U, 235u, 137Cs and 133Xe in soils from two campuses in university of Douala–Cameroon. Appl Radiat Isot. 86:85–89. doi:10.1016/j.apradiso.2013.12.041.
NEA-OECD. 1979. Nuclear Energy Agency. Exposure to Radiation from Natural Radioactivity in Building Materials. Report by NEA Group of Experts, OECD, Paris.
Norrish K, Hutton JT., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta. 33(4):431–453. doi:10.1016/0016-7037(69)90126-4.
Örgün Y, Altınsoy N, Şahin SY, Güngör Y, Gültekin AH, Karahan G, Karacık Z., 2007. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isot. 65:739–747. doi:10.1016/j.apradiso.2006.06.011.
Osae S, Asiedu DK, Banoeng-Yakubo B, Koeberl C, Dampare SB., 2006. Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: evidence from geochemistry and detrital modes. J Afr Earth Sci. 44:85–96. doi: 10.1016/j.jafrearsci.2005.11.009
Penabe S, Bongue D, Maleka P, Dlamini T, Saïdou, Guembou Shouop CJ, Halawlaw YI, Ngwa Ebongue A, Kwato Njock MG., 2018. Assessment of natural radioactivity levels and the associated radiological hazards in some building materials from Mayo-Kebbi region. Chad Radioprotection. 53(4):265–278. doi:10.1051/radiopro/2018030.
Pettijohn FJ, Potter PE, Siever R., 1987. Sand and sandstone, second ed. New York: Springer.
Potts PJ., 1987. X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry. In: A handbook of silicate rock analysis. Boston (MA): Springer. https://link.springer.com/chapter/10.1007%2F978-1-4615-3270-5_8.
Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V., 2011. Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot. 69:184–195. doi: 10.1016/j.apradiso.2010.07.020
Reynolds R., 1967. Estimation of mass absortion coefficients by Compton scatterring: improvement and extensions of the method. Amer Mineral. 52:1493–1502.
Roser BP, Korsch RJ., 1988. Provenance signatures of sandstonemudstone suites determined using discriminant function analysis of major-element data. Chem Geol. 67:119–139. doi: 10.1016/0009-2541(88)90010-1
Schlüter T., 2008. Geological Atlas of Africa: with notes on stratigraphy, tectonics, economic geology, geohazards, geosites and geoscientific education of each Country. Springer Sci Bus Media Sci. 307. doi:10.1007/978-3-540-76373-4.
Sentilkumar B, Dhavamani V, Ramkumar S, Philominathan P., 2010. Measurement of gamma radiation levels in soil samples from Thanjavur using gamma-ray spectrometry and estimation of population exposure. J Med Phys. 35(1):48–53. doi: 10.4103/0971-6203.55966
Sima O., 1992. Photon attenuation for samples in Marinelli beaker geometry: an analytical computation. Health Phys. 62(5):445–449. doi: 10.1097/00004032-199205000-00011
Sima O., 2012. Efficiency calculation of gamma detectors by Monte Carlo methods. In: Meyers R.A., editor. Encyclopedia of analytical Chemistry. Chichester: John Wiley. doi: 10.1002/9780470027318.a9142
Solé VA, Papillon E, Cotte M, Walter P, Susini J., 2007. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B At. Spectrosc. 62:63–68. doi:10.1016/j.sab.2006.12.002.
Srilatha MC, Rangaswamy DR, Sannappa J., 2015. Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem. 303:993–1003. doi:10.1007/s10967-014-3584-1.
Taylor SR, McLennan SM., 1985. The continental crust: its composition and evolution. Oxford: Blackwell Scientific, p. 312.
Tchouankoue JP, Simeni NA, Dongmo AK, Wörner G., 2012. Petrology, geochemistry, and geodynamic implications of basaltic dyke swarms from the Southern Continental part of the Cameroon Volcanic Line, Central Africa. Open Geol J. 6(1):72–84. doi: 10.2174/1874262901206010072
UNSCEAR. 1993. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation. United Nations, New York http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Report.pdf.
UNSCEAR. 2000. Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation. United Nations, New York http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf.
Zhang KL., 2004. Secular geochemical variations of the lower cretaceous silica clastic from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth Planet Sci Lett. 229:73–89. doi: 10.1016/j.epsl.2004.10.030