Nonlinearity; ℋ∞ optimisation; Positive position feedback; Harmonic balance; Duffing oscillator
Abstract :
[en] This paper investigates the potential of using a nonlinear positive position feedback controller for vibration mitigation of a Duffing oscillator. The proposed controller is designed based on the principle of similarity which states that anti-vibration devices should be governed by the same equations as those of the host structure. Closed-form expressions for the H∞ optimal control parameters that minimise the maximal response of the structure are firstly derived for the linear positive position feedback controller and then extended to the nonlinear counterpart. The harmonic balance method is employed to approximate the analytical solutions. Both numerical simulations and experimental validations are performed to demonstrate the proposed control strategy.
Wang, F.-Y., Gao, Y., Advanced studies of flexible robotic manipulators. World Sci., 2003, 10.1142/5290.
M. Darecki, C. Edelstenne, T. Enders, E. Fernandez, P. Hartman, J.-P. Herteman, M. Kerkloh, I. King, P. Ky, M. Mathieu, G. Orsi, G. Schotman, C. Smith, J.-D. Wörner, Flightpath 2050, Flightpath 2050 Eur. Vis. Aviat. (2011) 28. doi: 10.2777/50266.
Den Hartog, J.P., Mechanical Vibrations. 1985, Dover Publications.
Hagood, N.W., von Flotow, A., Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146 (1991), 243–268, 10.1016/0022-460X(91)90762-9.
Zhao, G., Alujević, N., Depraetere, B., Sas, P., Dynamic analysis and ℋ2 optimisation of a piezo-based tuned vibration absorber. J. Intell. Mater. Syst. Struct. 26 (2015), 1995–2010, 10.1177/1045389X14546652.
Preumont, A., Vibration Control of Active Structures. 2011, Springer, Netherlands, Dordrecht DOI: 10.1007/978-94-007-2033-6.
Alujević, N., Tomac, I., Gardonio, P., Tuneable vibration absorber using acceleration and displacement feedback. J. Sound Vib. 331 (2012), 2713–2728, 10.1016/j.jsv.2012.01.012.
Alujević, N., Zhao, G., Depraetere, B., Sas, P., Pluymers, B., Desmet, W., ℋ2 optimal vibration control using inertial actuators and a comparison with tuned mass dampers. J. Sound Vib. 333 (2014), 4073–4083, 10.1016/j.jsv.2014.04.038.
Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Kerschen, G., Collette, C., Active tuned inerter-damper for smart structures and its ℋ∞ optimisation. Mech. Syst. Signal Process. 129 (2019), 470–478, 10.1016/j.ymssp.2019.04.044.
Agnes, G.S., Kriz, R.D., Performance of Nonlinear Mechanical, Resonant-Shunted Piezoelectric, and Electronic Vibration Absorbers for Multi-Degree-of-Freedom Structures by Electronic Vibration Absorbers for Multi-Degree-of-Freedom Structures. 1997, Virginia Polytechnic Institute and State University.
Febbo, M., Machado, S.P., Nonlinear dynamic vibration absorbers with a saturation. J. Sound Vib. 332 (2013), 1465–1483, 10.1016/j.jsv.2012.11.025.
Habib, G., Detroux, T., Viguié, R., Kerschen, G., Nonlinear generalization of Den Hartog's equal-peak method. Mech. Syst. Signal Process. 52–53 (2015), 17–28, 10.1016/j.ymssp.2014.08.009.
Detroux, T., Habib, G., Masset, L., Kerschen, G., Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber. Mech. Syst. Signal Process. 60–61 (2015), 799–809, 10.1016/j.ymssp.2015.01.035.
Habib, G., Kerschen, G., A principle of similarity for nonlinear vibration absorbers. Physica D 332 (2016), 1–8, 10.1016/j.physd.2016.06.001.
Oueini, S.S., Nayfeh, A.H., Pratt, J.R., A review of development and implementation of an active nonlinear vibration absorber. Arch. Appl. Mech. Ingenieur Arch. 69 (1999), 585–620, 10.1007/s004190050245.
Pai, P.F., Wen, B., Naser, A.S., Schulz, M.J., Structural vibration control using Pzt patches and non-linear phenomena. J. Sound Vib. 215 (2002), 273–296, 10.1006/jsvi.1998.1612.
Oveisi, A., Gudarzi, M., Adaptive sliding mode vibration control of a nonlinear smart beam: a comparison with self-tuning Ziegler-Nichols PID controller. J. Low Freq. Noise, Vib. Act Control. 32 (2013), 41–62, 10.1260/0263-0923.32.1-2.41.
Warminski, J., Cartmell, M.P., Mitura, A., Bochenski, M., Active vibration control of a nonlinear beam with self- and external excitations. Shock Vib. 20 (2013), 1033–1047, 10.3233/SAV-130821.
Zhang, S.Q., Li, Y.X., Schmidt, R., Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities. Compos. Struct. 122 (2015), 239–249, 10.1016/j.compstruct.2014.11.031.
Warminski, J., Bochenski, M., Jarzyna, W., Filipek, P., Augustyniak, M., Active suppression of nonlinear composite beam vibrations by selected control algorithms. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2237–2248, 10.1016/j.cnsns.2010.04.055.
El-Sayed, A.T., Bauomy, H.S., Nonlinear analysis of vertical conveyor with positive position feedback (PPF) controllers. Nonlinear Dyn. 83 (2016), 919–939, 10.1007/s11071-015-2377-6.
El-Ganaini, W.A., Saeed, N.A., Eissa, M., Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72 (2013), 517–537, 10.1007/s11071-012-0731-5.
Omidi, E., Mahmoodi, S.N., Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach. Nonlinear Dyn. 79 (2015), 835–849, 10.1007/s11071-014-1706-5.
Omidi, E., Mahmoodi, S.N., Nonlinear integral resonant controller for vibration reduction in nonlinear systems. Acta Mech. Sin. 32 (2016), 1–10, 10.1007/s10409-016-0577-z.
Omidi, E., Mahmoodi, S.N., Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems. Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 149–166, 10.1016/j.cnsns.2014.10.011.
Korschm, H., Jodl, H.J., Hartmann, T., Chaos. third ed., 2008, Springer Berlin Heidelberg, Berlin, Heidelberg DOI: 10.1007/978-3-540-74867-0.
Kovacic, I., Brennan, M.J., The Duffing Equation: Nonlinear Oscillators and their Behaviour. 2011, John Wiley & Sons Ltd DOI: 10.1002/9780470977859.
Kecik, K., Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mech. Syst. Signal Process. 106 (2018), 198–209, 10.1016/j.ymssp.2017.12.028.
Faghih Shojaei, M., Ansari, R., Mohammadi, V., Rouhi, H., Nonlinear forced vibration analysis of postbuckled beams. Arch. Appl. Mech. 84 (2014), 421–440, 10.1007/s00419-013-0809-7.
Vassilopoulou, I., Gantes, C., Nonlinear dynamic phenomena in a SDOF model of cable. Arch. Appl. Mech. 82 (2012), 1689–1703, 10.1007/s00419-012-0660-2.
Carrella, A., Brennan, M.J., Waters, T.P., Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301 (2007), 678–689, 10.1016/j.jsv.2006.10.011.
Ibrahim, R.A., Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314 (2008), 371–452, 10.1016/j.jsv.2008.01.014.
Asami, T., Nishihara, O., Closed-form exact solution to ℋ∞ optimization of dynamic vibration absorbers (application to different transfer functions and damping systems). J. Vib. Acoust., 125, 2003, 398, 10.1115/1.1569514.
Meirovitch, L., Dynamics and Control of Structures. 1990, John Wiley & Sons Inc.
Wagg, D., Neild, S., To, C.W.S., Lau, S.K., Nonlinear Vibration with Control. 2010, Springer, Netherlands, Dordrecht DOI: 10.1007/978-90-481-2837-2.
Detroux, T., Renson, L., Masset, L., Kerschen, G., The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296 (2015), 18–38, 10.1016/j.cma.2015.07.017.
Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C., Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20 (2006), 505–592, 10.1016/j.ymssp.2005.04.008.
Slotine, J.-J.E., Li, W., Applied Nonlinear Control. 1991, Prentice Hall, Englewood Cliffs, New Jersey.