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Abstract 

This paper investigates the potential of using a nonlinear positive position feedback controller for 

vibration mitigation of a Duffing oscillator. The proposed controller is designed based on the 

principle of similarity which states that anti-vibration devices should be governed by the same 

equations as those of the host structure. Closed-form expressions for the ℋ∞ optimal control 

parameters that minimise the maximal response of the structure are firstly derived for the linear 

positive position feedback controller and then extended to the nonlinear counterpart. The harmonic 

balance method is employed to approximate the analytical solutions. Both numerical simulations 

and experimental validations are performed to demonstrate the proposed control strategy. 

Keywords: Nonlinearity, ℋ∞ optimisation, positive position feedback, harmonic balance, Duffing 

oscillator 

1 Introduction 

Controlling nonlinear structural vibrations is becoming increasingly important in a number of 

engineering applications such as aerospace, medicine and robotics, wherein lightweight materials 

are considered in the construction of systems in order to meet the increasing demand for fuel 

efficiency or smaller actuators [1,2]. However, this will naturally lead to the fact that the resonances 

are lightly damped and to the presence of geometrical nonlinearities resulting from large 

deformations. The resulting unwanted nonlinear vibrations thus become the main concern, limiting 

the success of these applications. One key characteristic of nonlinear vibrations is their frequency-

energy dependence which means that the frequency of the nonlinear oscillations depends 

intrinsically on the motion amplitudes [3]. As a consequence, the mature linear damping-enhanced 



approaches based on the superposition principle such as tuned mass dampers (TMD) and 

piezoelectric shunting [4–6] (passive solutions) or direct velocity feedback, integral acceleration 

and force feedback controllers [7–10] (active solutions) are no longer effective in the presence of 

strong nonlinearities. In order to recover their control effectiveness for a large range of excitation 

levels, mechanisms that can deliver nonlinear reacting forces should be included in these linear 

approaches. For example, Agnes [11] suggested to integrate a positive or negative cubic spring into 

a linear vibration absorber for compensating the softening (hardening) nonlinear effect of the 

primary systems. Febbo and Machado [12] explored the potential of using a nonlinear absorber 

with a saturation nonlinearity for vibration mitigation of a nonlinear primary oscillator possessing 

a cubic stiffness. Habib et al. [13], Detroux et al. [14] and Habib and Kerschen [15] stated that 

nonlinear vibration absorbers can be designed as a mirror of the primary structures i.e. nonlinear 

vibration absorbers should possess the same nonlinearities as those in the primary systems. This 

design principle is also referred to as the principle of similarity. It was reported that nonlinear 

primary systems attached with nonlinear vibration absorbers designed based on the principle of 

similarity behave in a similar fashion as their linear counterpart. Although this concept is 

promising, it may become cumbersome and expensive to realise them in practice using passive 

means for complex nonlinear primary systems.  

On the other hand, in an active approach it is attempted to introduce the desired nonlinear control 

forces using sensors and actuators. This may yield a nonlinear anti-vibration system that is less 

complex. Various types of active controllers have been investigated for vibration attenuation of 

nonlinear systems [16–25]. Among them, linear positive position feedback (LPPF) and nonlinear 

positive position feedback (NPPF) controllers are found to be particularly effective if they are 

aimed to damp one particular structural vibration mode. This type of controller is implemented by 

feeding the structural position directly to a linear or nonlinear compensator, whose output is then 

fed through a fixed gain positively back to drive the actuator. In this context, they would be well 

suited for the applications where piezoelectric sensors and actuators are employed for vibration 

damping. This is because the voltage from the sensor is proportional to the strain of the attached 

structure, which can be directly measured to drive the strain-based piezoelectric actuators. 

Warminski et al. [21] compared the control performance of a LPPF controller with three other 

controllers, namely proportional position feedback, cubic position feedback and nonlinear 

saturation feedback, for suppression of nonlinear composite beam vibrations. It was found that the 

LPPF controller is only effective for weakly nonlinear systems and the nonlinear saturation 

controller was concluded to be superior for the nonlinear primary structure under consideration. 

The performance of the LPPF controller was also investigated in [22], but on a four-degree-of-

freedom system with cubic nonlinearities. El-Ganaini et al. [23] studied a nonlinear positive 

position feedback controller for vibration suppression of a nonlinear system where both cubic and 

inertial nonlinearities are present. This NPPF controller can be seen as an extension of a LPPF 

controller where a cubic nonlinear term is added to the linear second order resonant compensator. 

Omidi and Mahmoodi [24,26] proposed to include an additional first-order low pass filter in 

parallel to the NPPF controller aiming to enhance the control performance. Although the feasibility 

of using active means for mitigation of nonlinear vibrations has been successfully demonstrated in 

the aforementioned studies, limited investigation on the optimisation of these controllers exists. 

This study is focused on the optimisation of the described NPPF controller for vibration 

suppression of a Duffing oscillator and on its experimental validation. The Duffing oscillator is 

defined as a forced and damped harmonic oscillator with a cubic nonlinearity in the restoring force 

[27,28]. Although it exhibits a simple form, a variety of physical examples can be dynamically 

characterised by the Duffing equation such as pendulum dynamics [29], beam buckling [30], cable 

dynamics [31] and nonlinear isolators [32,33]. Using the NPPF controller for vibration mitigation 

of a Duffing oscillator can be considered as an active anti-vibration approach developed based on 



the principle of similarity as proposed in [13–15], since the NPPF controller possesses the same 

nonlinearity as the primary structure. Therefore, the optimisation process is sequentially performed 

in two steps. For step one, the linear version of the NPPF controller i.e. the LPPF controller is 

optimally configured for a linear single-degree-of-freedom (SDOF) system using the ℋ∞ criterion 

aiming to minimise the maximum steady state response of the primary structure. The derived 

optimal setting for the LPPF controller serves as a basis for finalising the NPPF controller for 

vibration mitigation of Duffing oscillators. In step two, the left un-optimised parameter i.e. the 

coefficient of the cubic term in the NPPF controller is optimally tuned such that the resonance of 

the Duffing oscillator is damped by the NPPF controller in a similar fashion as that of a linear 

SDOF system by a LPPF controller for an as large as possible range of excitation levels. For 

primary systems with other classes of nonlinearities, the corresponding NPPF controller i.e. 

possessing the same mathematical nonlinear form can be employed and optimised in a similar 

procedure.    

The paper is organised as follows. In the next section, the mathematical model of the system under 

consideration is first derived, based on which the optimal settings of the LPPF and NPPF 

controllers are derived using the ℋ∞ optimisation criterion. In Section 3, experimental results are 

presented for the validation of the derived formulae. Conclusions are drawn in Section 4. 

2 Mathematical model and ℋ∞ optimisation 

2.1 Modelling 

The system under investigation is shown in Figure 1, which represents a Duffing oscillator. It is 

defined through a lumped mass 1m , a linear spring 1k  and a cubic spring 3k , and excited by a 

harmonic force  cosdF F t . A force actuator with its stiffness 2k  is placed in parallel to the 

passive mount. The control loop is implemented by feeding the displacement of the lumped mass 

1m through a nonlinear controller  h x  to drive the actuator. 

The governing equations of the system read: 

  3

1 1 3 2cosd am x k x k x F t F k x       (1) 

  1aF g h x   (2) 

where 
aF  is the actuating force proportional to the driving signal, 1g  represents the feedback gain 

and  h x  is the NPPF control law.  

The NPPF controller is designed based on the principle of similarity. A cubic term is thus included 

in the LPPF controller, which yields: 

 2 32a f a f a au u u u x        (3) 

where  au h x ,  , f  and   are controller parameters. 

In order to come to a more general formulation, the following parameters are introduced to 

normalise the system governing equations:  
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The equations of motion with normalised parameters can then be written as:  

  3

1 1 1 2 cosy y y gy        (5) 

 2 3

2 2 2 2 12 0y y y y y          (6) 

where   is the normalised frequency defined as 1   .  

It is shown that the forcing amplitude appears only in the expression of the nonlinear coefficients. The ℋ∞ 

optimisation criterion is employed to optimise the controller  h x  aiming to minimise the maximum 

magnitude of the frequency response of the system under consideration. In this context, the magnitude of 

the normalised driving point receptance 1y  is taken as the performance index.   
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Figure 1 The schematic of the system under consideration  

2.2 ℋ∞ optimisation of the LPPF controller 

In this subsection, the optimisation of the LPPF controller is performed. This is done by setting the 

parameter   in Eq. (5) equal to zero. The normalised driving point receptance of the primary 

structure is then given by: 
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where s j   is the Laplace variable and the modulus of 1y  is calculated as: 
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From the mathematic point of view, the control effectiveness of the LPPF controller according to 

Eq. (7) would be similar to that of a TMD, where an additional zero is introduced to interfere with 



the resonance of the primary system aiming to reduce certain vibration metrics in the frequency 

band of interest. Following the ℋ∞ optimisation procedure proposed by Den Hartog [4], the 

parameters of the LPPF controller are optimally tuned such that the response at the fixed points is 

minimised. Fixed point refers to the frequency location at which the magnitude of the driving point 

receptance of the primary structure is invariant in terms of the damping coefficient of the TMD or 

the parameter   of the LPPF controller.  

The frequencies at which the fixed points occur can be calculated by differentiating Eq. (8) with 

respect to the damping coefficient,  , and equating the derivative to zero, which yields: 
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The optimal   is set to equalise the resulting performance index as defined in Eq. (8) at the two 

fixed points. This can be achieved by substituting Eqs. (9) and (10) into Eq. (8) and equating the 

resulting expressions for 0  , which yields, 

 1opt    (11) 

For the optimal  , it is sought to make the performance index pass horizontally through the fixed 

points. Thus, two optimal damping coefficients associated with the two fixed points are obtained:    
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The optimal   can be calculated in practice by calculating the quadratic average of Eqs. (12) and 

(13), which is given by: 
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It should be noted that this approach is an empirical method as the resulting resonance points (the 

derivative of Eq. (8) with respect to   is equal to zero) do not necessarily coincide simultaneously 

with the corresponding fixed points. An exact solution for this problem was proposed in [34], with 

which the two resulting resonance points are equally mitigated. In this study this exact approach is 

not considered because this would result in very long and therefore rather impractical polynomial 

expressions. 

Up to now, only the parameter g (normalised feedback gain) is left un-optimised for implementing 

the LPPF controller. The function of the feedback gain g can be assessed by evaluating the 

magnitude of driving point receptance at the fixed points. This is done by substituting Eqs. (9) and 

(11) into Eq. (8) for 0  , which yields the minimal maximum response 

 1

2
mmy

g
   (15) 



As shown in Eq. (15), the minimal maximum response is inversely proportional to the gain g , 

indicating that the value of the feedback gain g  should be as high as possible without 

compromising the stability of the active system.  

The stability of an active linear system can be studied by applying the Routh-Hurwitz stability 

criterion to its closed loop characteristic equation [35]. The characteristic equation of the system 

can be formed as:   

 4 3 2

4 3 2 1 0 0A s As AA s A s      (16) 

where 0A , 1A , 2A , 3A  and 4A  are the corresponding coefficients of Laplace variable in the 

denominator of Eq. (7). 

The Routh-Hurwitz stability criterion states that the roots of the characteristic equation have 

negative real parts if and only if the following conditions are satisfied: 

 0 1 2 3 4, , , , 0A A A A A    (17) 

 2 3 1 4 0A A A A    (18) 

 2 2

1 2 3 1 4 0 3 0A A A A A A A     (19) 

It can be derived that the system is stable if and only if the gain g  is defined such that:  

 2g    (20) 

In the following, numerical studies are performed to illustrate the control effectiveness of the LPPF 

controller for the system under consideration.  

 

Figure 2 shows the performance index 1y  plotted against frequency for five different damping 

ratios defined as opt  : 0, 1/4, 1, 4 and  , where the control parameters   is set to its optimal 

value as given in Eq. (11) and the gain is set to 0.2. It can be seen that all the curves with different 

damping values intersect at two frequencies and only with the optimal damping the response at the 

two fixed frequencies becomes maximum. One should also note that the system becomes 

dynamically softer with the application of the LPPF controller as the control signal is positively 

proportional to the displacement of the system in the low frequency range where the LPPF control 



effectiveness is similar to that of a negative spring. However, when the damping value approaches 

infinity, the softening effect disappears as the control action is lost.  

 

Figure 2 The driving point receptance for different active damping ratios 

Figure 3 depicts the performance index 1y  plotted against frequency for four different feedback 

gains, namely g : 0, 0.01, 0.05, and 0.5, where the control parameters   and   are both set to their 

optimal values. As can be seen, the performance index indeed decreases with an increase in the 

gain as indicated by Eq. (15). In this respect, the feedback gain g  of the PPF controller can be 

understood to play the same role as the mass ratio between tuned mass dampers and host primary 

structures, where better performance comes with greater values of this quantity. However, the 

approximation errors induced by the estimation of the damping parameter   is more pronounced 

with an increase in the feedback gain. In the same fashion, the response in the low frequency range 

will be more amplified because of the negative stiffness effect. Therefore, the maximum feedback 

gain g  is not only limited by the stability concern, but also by the amplification of the low 

frequency response.  

 



 

Figure 3 The driving point receptance for different feedback gains 

2.3 ℋ∞ optimisation of the NPPF controller 

In this subsection, ℋ∞ optimisation of the NPPF controller is performed. Due to the cubic terms, it is difficult 

to derive the explicit expression of the performance index from Eqs. (5) and (6). As reported in [36–38], 

harmonic solutions can be used to approximate the exact solutions with a good agreement. In this study, the 

performance index is approximated using the first-order harmonics. Thus, a one-term harmonic balance 

approximation is assumed as the solution: 

    1 1 1cos siny A B       (21) 

    2 2 2cos siny A B       (22) 

Substituting Eqs. (21) and (22) into Eqs. (5) and (6), and applying the approximations 

   3cos 3 4cos     and    3sin 3 4sin    , a set of polynomial equations is obtained by 

balancing cosine and sine terms: 
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2 2 2 2

2 2 1 2 2 1 12 3/ 4 ( ) 0B A B B B A B             (26) 

Although the original nonlinear differential equations have been transformed to a set of nonlinear algebraic 

equations, it is not yet possible to find explicit solutions of Eqs. (23)-(26). They are instead solved with 

approximate solutions. It is further assumed that the nonlinear coefficient   is a small quantity and the 

harmonic coefficients iA  and iB  can be expanded into series with respect to the primary nonlinear 

coefficient  , i.e. 1 11 12A A A  , 1 11 12B B B   , 2 21 22A A A   and 2 21 22B B B  .   



Substituting the above ansatz into Eqs. (23)-(26), collecting the resulting expressions with respect to the 

order of the parameter  , and omitting the expressions whose orders are higher than 1 , one obtains:   
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Solving for ijA  and ijB  ( 1,2i  , 1,2j  ) from Eqs. (27)-(34), the resulting solutions are found to be 

in terms of the control gains   ,  , g  and the normalised frequency  . Due to the complexity, 

these expressions are not given here. Nevertheless, the modulus of the normalised frequency 

response  1y  , namely the performance index, can be expressed as:  

      2 2 2 2 2 2 2

1 1 11 11 11 12 11 12 12 122Q A B A B A A B B A B            (35) 

An additional condition is imposed in order to derive the optimal coefficient of the nonlinear 

compensator  , which is sought to maintain the equal peaks at the fixed points associated with the 

LPPF controller for the linear primary system i.e.:  

    1 2f fQ Q     (36) 

Substituting the optimal setting of   and   as given in Eqs. (11) and (14) as well as the solutions 

of ijA  and ijB  ( 1,2i  , 1,2j  ) of Eqs. (27)-(34) into Eq. (36), one obtains 

 2 32 9 /16 ( )opt g g O g      (37) 

In fact, Eq. (37) represents a simpler and more easily interpretable relation which is the Taylor 

series expansion of the exact solution (it is not given here either because of the complexity) with 

respect to the feedback gain g  given g  ≪ 1. The relative error introduced by the approximation is 

fewer than 1.5% up to the dimensionless feedback gain 1g  . 

Up to now, the derivation of the explicit expressions for forming the NPPF controller  h   is 

complete wherein the optimal control parameters  ,   and   are given in Eqs. (11), (14) and 

(37), respectively. As for the maximum feedback gain g  for the NPPF controller, Eq. (20) which 

constrains the maximum g  for the LPPF controller is still applicable according to the Lyapunov’s 

linearisation theory [39]. This theorem states that if the linearised system is strictly stable, then the 

equilibrium point for the actual nonlinear system is asymptotically stable. It can be proved that the 



nonlinear system coupled with the NPPF controller as described by Eqs. (5) and (6) can be 

linearised to the same linear system as described in Subsection 2.2. However, the Lyapunov’s 

linearisation theory is only valid for small range of motions around the equilibrium points (a local 

stability theorem) and it is not yet clear what are the boundary conditions for the linearisation 

approximations to hold (global stability theorem is needed). It is left for the subject of future work.  

2.4 Performance of the NPPF controller 

Numerical studies are performed to validate and examine the control effectiveness of the NPPF 

controller for the Duffing oscillator. The performance index derived from the system governing 

equations given by Eqs. (5) and (6) is computed using a path-following algorithm combining 

harmonic balance and pseudo-arclength continuation [37]. The first 5 harmonics are taken for a 

good approximation and the convergence requirement. The stability of the solutions is determined 

using Hill’s method and the type of instabilities i.e. fold and Neimark-Sacker bifurcations is 

detected using a test function based on the Floquet multipliers [37]. The ‘stability’ in the current 

context is referred to as the local stability of the solutions of the nonlinear equations where the 

system motion is always bounded. This is different from the concept discussed in Subsection 2.2 

and 2.3, where the system motion exponentially increases until the system is destroyed if instability 

happens. In addition, a modal damping of 1% is added to the primary structure during the 

computation in order to avoid unnecessary numerical errors i.e. infinite-amplitude responses. This 

particular value is chosen as it also represents the modal damping of the experimental set-up that 

will be presented in Section 3.    

The first study is focused on the validity of Eq. (37) which describes the optimal coefficient of the 

nonlinear compensator i.e. the cubic term of the NPPF controller. Figure 4 (a) plots the frequency 

response of the performance index 1y  of the Duffing oscillator attached with a NPPF controller 

whose parameters are configured as follows: the normalised feedback gain g  is set to 0.05, the 

damping ratio and the resonance ratio   and   are calculated as in Eqs. (14) and (11), 

respectively, the nonlinear coefficient   is set to 0.003 and the parameter   varies with respect to 

its optimal value as opt  : 1/4, 1/2, 1, 2 and 4. It is seen that the response at the first resonance 

frequency increases with an increase of the parameter   and an opposite trend is observed for the 

second resonance peak. The resonance peaks of equal amplitudes are obtained with the optimal 

setting of the parameter   as given in Eq. (37). For the parameter setting 4opt   , a pair of fold 

bifurcations is observed which modifies the stability of the solutions along the frequency response. 

Figure 4 (b) compares the performance index of the Duffing oscillator attached with an optimally 

tuned NPPF controller and its counterpart optimal LPPF controller for the same parameter 

configuration 0.05g   and 0.003  . As can be seen, the LPPF controller is detuned for the 

system under consideration and a hardening behaviour characteristic of cubic springs with positive 

coefficients is present at the second resonance peak. On the other hand, the two resonance peaks 

still remain approximately equal with the NPPF controller which reveals the superior performance 

of the NPPF controller compared to the LPPF controller. 



 

  

 

Figure 4 The performance index |y1| with the NPPF controller for the feedback gain of 0.05, the 

primary nonlinear coefficient   of 0.003 and: (a) different values of the nonlinear coefficient   

(b) the optimal nonlinear coefficient  , and comparison with an optimal LPPF controller (—

:stable solution, --: unstable solution, : fold bifurcation) 

For the second study, the comparison between the LPPF and NPPF controllers is extended for some 

other values of the nonlinear coefficient   which is chosen to vary between 0.0001 and 0.008. 

Figure 5 (a) compares the frequency response of the Duffing oscillator with the optimally tuned 



LPPF controller. As can be seen, when   is smaller than 0.0008, the LPPF controller works 

properly, where the responses at the two resonances remain equal and the classical linear results 

are observed. This is because the input excitation level is not high enough to trigger the nonlinearity 

of the primary system. However when   is increased to 0.003, a visible difference between the 

two peak amplitudes is observed, which indicates that the optimal LPPF controller starts to be 

detuned. Above 0.005, the controller is completely detuned as the response at the second resonance 

is much greater than that at the first resonance. It is also noted that a sudden shift of the location of 

the second resonance occurs when   is increased from 0.003 to 0.005 which is not the case for 

example when   is increased from 0.005 to 0.008. This phenomenon is observed because there is 

an isolated resonance branch, also termed an isola, coexisting with the main frequency response 

function curve due to the non-uniqueness solutions of nonlinear equations. For 0.005  , the isola 

merges with the main curve at the second resonance leading to a sudden shift of the resonance. On 

the ground of the observed results, it can be concluded that the LPPF is only effective for weakly 

nonlinear systems in terms of vibration mitigation.    

 

 



 

Figure 5 The performance of the system under consideration where the feedback gain is set to 

0.05 and the primary nonlinear coefficient   varies between 0.0001 and 0.008: (a) with LPPF 

controller, (b) with NPPF controller and (c) quasiperiodic motion at  1.16  (—:stable 

solution, --: unstable solution, : fold bifurcation, : Neimark-Sacker bifurcation) 

Figure 5 (b) depicts the control effectiveness of the optimal NPPF controller for the same system 

parameter configuration as that applied for the LPPF controller. It shows that the nonlinear 

controller can compensate LPPF detuning until   reaches 0.005. However, it is not able to fully 

eliminate the coalescence of the isola and the main frequency response curve by the proposed NPPF 

controller as seen for the case when 0.008  . This means that the NPPF controller fails to 

maintain the equal peak property in the presence of a very strong nonlinearity. In addition, another 

type of dynamical instability i.e. a pair of Neimark-Sacker bifurcations is observed which leads to 

a branch of quasiperiodic solutions. The quasiperiodic solutions are computed using direct time 

integration techniques and the maximum peak amplitude is taken as the response for the plot. It is 

noted that the quasiperiodic branch suddenly breaks around the first fold bifurcation point and the 

quasiperiodic solutions after this point merge with the normal oscillation solutions. This indicates 

that the second half branch of the quasiperiodic oscillations may not be stable i.e. it cannot be 

physically realised. A time series of the quasiperiodic motions at 1.16  is plotted in Figure 5 

(c). It is shown that the control performance degrades in the presence of the quasiperiodic motions 

as the resonance peak is amplified. Nevertheless, the proposed NPPF controller is shown to be able 

to delay the occurrence of the coalescence of the isola and the main frequency response function 

curve for relatively large forcing amplitudes compared to the LPPF controller, which also allows 

to extend the linearity bandwidth of the nonlinear system under control to a relatively large extent. 

It is foreseen that this bandwidth can be further extended if   is assumed to be also dependent on 

the nonlinear coefficient   instead of Eq. (35) which is solely determined by g . This is also left 

for the subject of future work.   

3 Experimental validation 

In order to validate the analytical formulae derived for the LPPF and NPPF controllers in Section 

2, a representative test bed for a Duffing oscillator was constructed which is shown in Figure 6. 

The set-up consists of a cantilever aluminium beam with dimensions 45cm*3cm*0.3cm 



(length*width*thickness), which is clamped at one side and attached with a voice coil actuator 

(AVM24-10) at the other side. Close to the voice coil actuator, an eddy-current sensor was installed 

to measure the tip displacement of the beam. In this study, only the first bending mode of the beam 

is considered such that the single mode beam dynamically represents a linear SDOF system. As for 

the nonlinear cubic spring of the Duffing oscillator, it was realised in an artificial way by feeding 

back the tip displacement of the cantilever beam through a cubic function to drive the voice coil 

actuator. With this configuration, it is also possible to simulate nonlinear forces for other 

applications by applying the corresponding force profiles to the actuator. However, some additional 

damping is induced due to the installation of the voice coil actuator (the eddy-current effect and air 

viscous damping effect), which violates the no damping assumption of the primary structure. Thus, 

a negative damping control loop was implemented in addition in order to eliminate the total 

inherent damping of the system. This is achieved by calculating the derivative of the tip 

displacement signal and positively feeding it back to drive the voice coil actuator.  

The configuration scheme for the experimental study is depicted in Figure 7. As seen, the input 

signal applied to the voice coil actuator comprises four contributions: (i) the disturbance force, (ii) 

the cubic spring force, (iii) the negative damping force and (iv) the control force. It is noted that 

the control force delivered by the NPPF controller is calculated in a way similar to that for 

implementing the ‘artificial’ Duffing oscillator, where the output of the LPPF compensator is fed 

through a cubic function and then negatively superposed with the displacement signal (sensor 

output) in order to form the corresponding nonlinear input signal for the LPPF compensator.  

(1)
(2)

(3)

(4)

(5)

(6)

(7)

 

Figure 6 The experimental test set-up: (1) voice coil actuator, (2) eddy current sensor, (3) DC 

power source to power the conditioner for the eddy current sensor, (4) cantilever beam, (5) 

MicroLabBox, (6) laptop and (7) current amplifier 

During the experimental study a dSpace MicroLabBox system was used both for data acquisition 

and for control purposes. The whole control scheme was implemented in the Matlab Simulink 

environment and then downloaded to the processor unit of the MicroLabBox system. The control 

scheme was updated at a sampling frequency of 10 kHz, and the measured data was recorded at the 

same sampling frequency. A current amplifier (ADD-45N) was used to drive the voice coil actuator.  
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Figure 7 The configuration scheme for the experimental study 

In order to derive the optimal control parameters for the test bed under consideration, system 

identification was performed. With a curve fitting process, the modal mass, stiffness and the 

damping ratio (when negative velocity feedback loop is activated) associated with the first bending 

mode of the cantilever beam were identified; they are given in Table 1. The nonlinear cubic 

stiffness 3k  was artificially set to 
82 10  N/m3. 

Table 1 Parameters of the Duffing oscillator, optimal LPPF and NPPF controllers, and the level 

of the excitation force 

Primary system LPPF NPPF Exc. Level 

1 0.093m  kg  1 39000g    

( 0.05g  ) 

1 39000g   

 ( 0.05g  ) 

4dF  mN ( 0.00017  )  

8dF  mN ( 0.00067  ) 

270.27tk  (N/m) 1opt    1opt   12dF  mN ( 0.0015  ) 

𝑔𝑛𝑒𝑔 = 0.6  

(damping ratio of 1%) 

0.1391opt   0.1391opt   16.5dF  mN ( 0.003  ) 

20dF  mN ( 0.0042  ) 

8

3 2 10k   (N/m3)  151.8283 10opt     

( 0.099opt   ) 

23dF  mN ( 0.0056  ) 

 27dF  mN ( 0.0077  ) 

 



3.1 Experimental results in a linear regime of motion 

The first set of experiments was conducted to test the validity of the optimal control parameters for 

the LPPF controller. The cubic branches in Figure 7 for the primary Duffing oscillator and the 

NPPF controller were deactivated such that the system dynamically behaves in a linear fashion. 

During the tests, a white noise signal was applied to excite the beam in the vicinity of its first 

bending motion at 8.6 Hz. The duration of the measurement was set to 200 seconds. The optimal 

settings of the LPPF controller are given in Table 1. 

Figure 8 plots the transfer function between the disturbance force and the measured tip displacement, where the 

parameter   is varied from 1/100 to 100 times the theoretical optimum value. Figure 9 investigates the effect of the 

feedback gain 1g  on the frequency response of the driving point receptance, where the parameters   and   were 

set to their optimal values as given in Eq. (14) and Eq. (11), respectively. As seen, the obtained experimental results 

are in accordance with the theoretical analysis. The parameters of the LPPF controller can be tuned to minimise the 

maximum response of one structural mode in a fashion analogous to that of TMDs. The effectiveness of the LPPF 

controller at the optimal tuning is also verified to be dependent upon the feedback gain. However, as it was already 

emphasised in Section 2, the price to pay for this superior performance is the amplification of the response at low 

frequency. This is because the LPPF controller turns to a proportional controller at low frequency where its control 

effectiveness is to reduce the effective stiffness of the system thus leading to the low frequency amplification side 

effect. Figure 8 and Figure 9 are to be compared with  

 

Figure 2 and Figure 3, respectively.   



 

Figure 8 The frequency response of driving point receptance for different values of the damping 

ratio   when the LPPF controller is applied 

 

Figure 9 The frequency response of driving point receptance for different values of the feedback 

gain g  when the LPPF controller is applied  

3.2 Experimental results in a nonlinear regime of motion 

The potential of the LPPF and NPPF controllers for damping the Duffing oscillator is 

experimentally explored in this section. A sine sweep signal is applied as the disturbance to excite 

the beam. The sine sweep is bounded between 4 and 15 Hz with a sweeping rate of 0.02 Hz/s.  



 

Figure 10 Measurement of the tip displacement normalised to the excitation level when the LPPF 

controller is applied: (a) time history signals and (b) its envelope.  

The control effectiveness of the LPPF controller for vibration mitigation of the Duffing oscillator 

is examined first. Figure 10 (a) plots the time history of the tip displacement normalised to the level 

of the excitation force which is varied from 4 to 16.5 mN, while Figure 10 (b) depicts the envelope 

of the normalised response which thus can be equivalently considered as the driving point 

receptance, hereafter also referred to as the experimental performance index. The corresponding 

normalised nonlinear coefficient   for different levels of the excitation force is calculated 

according to Eq. (4) and shown in Table 1. As can be seen, the observed experimental results agree 

well with the theoretical analysis, that is, the LPPF controller is only effective for weakly nonlinear 

systems. In addition, a jump phenomenon associated with positive cubic springs is experimentally 

observed which indicates the existence of the fold bifurcations of the system motion. 

Next, the validity of  Eq. (37) is experimentally examined by repeating the same tests as conducted 

for Figure 4, where the coefficient of the cubic term of the NPPF controller   is varied over a 

range from 1/4 to 4 times the theoretical optimum value. The optimal value of   and its 

dimensionless counterpart   is given in Table 1. The corresponding experimental results are 

shown in Figure 11, which again agree well with the theoretical analysis i.e. the resonance peaks 

of equal amplitude are obtained with the derived optimal setting of  .  

The control performance of the LPPF and NPPF controllers is experimentally compared for the 

same feedback gain 1 39000g  (normalised gain 0.05g  ) and the excitation level 16.5dF  mN 

( 0.003  ), which is shown in Figure 12. It can be seen that the detuned control performance with 

the LPPF controller in terms of the ℋ∞ norm is retrieved by the NPPF controller as predicted in 

Figure 4 (b). 



 

Figure 11 Measurement of the tip displacement normalised to the excitation level when the NPPF 

controller with different values of   is applied: (a) time history signals and (b) its envelope. 

 

Figure 12 Experimental performance index obtained with the optimal LPPF and NPPF controllers 

for the same level of excitation 16.5dF  mN and feedback gain 1 39000g   

The investigation of the NPPF controller is continued with different levels of the excitation force 

ranging from 8 to 27 mN. The corresponding dimensionless nonlinear coefficient is given in Table 

1. The experimental results are presented in Figure 13 (a) and (b). It can be seen that the control 

performance with the NPPF controller is maintained for a larger range of excitation force 

amplitudes compared to the LPPF controller. However, when the disturbance was increased to 27 



mN, the response of the system is modulated around 10 Hz, which indicates that the system might 

fall into the regime of quasiperiodic motions. In order to confirm this, a sinusoidal excitation was 

used instead, where the frequency varied from 9.7 Hz to 10.2 Hz and the amplitude was set to 27 

mN. The evolution of the time series of the normalised system response with respect to the 

excitation frequency is shown in Figure 13 (c). It can be seen that the system response below 10.1 

Hz exhibits more than one frequency component under a sinusoidal excitation, which is a clear sign 

of the quasiperiodic oscillations. At 10.2 Hz, the maximum amplitude of the system response 

suddenly decreases and the quasiperiodic motion disappears. Back to the experimental performance 

index curve associated with this excitation amplitude as shown in Figure 13 (b), the results observed 

can be understood as follows: the system response follows the main frequency response curve until 

the first Neimark-Sacker bifurcation point located at around 9.7 Hz, then it continues to undergo 

some quasiperiodic motions between 9.7 Hz and 10.1 Hz and finally the response jumps down to 

the main frequency response curve instead of continuing to approach the second Neimark-Sacker 

bifurcation point along the same branch. This trend corresponds well with the numerical 

investigation as shown in Figure 5 (b) for the case 0.008  .      

 



 

Figure 13 Measurement of the tip displacement normalised to the excitation level when the optimal 

NPPF controller is applied: (a) time history signals, (b) its envelope and (c) time series with 

sinusoidal excitations 

4 Conclusion 

This paper investigates the control effectiveness of a NPPF controller for vibration attenuation of 

a Duffing oscillator. The proposed NPPF controller is built upon the classical LPPF controller but 

a cubic term is included according to the principle of similarity. The optimal settings of the LPPF 

and NPPF controllers are derived using the ℋ∞ optimisation criterion. Simple though accurate 

closed-form expressions are obtained. The harmonic balance method is employed to approximate 

the analytical solutions, and also to numerically evaluate the proposed tuning methodology. It is 

shown that the LPPF controller is only effective for weakly nonlinear systems in terms of vibration 

mitigation, while the NPPF controller could hold the control efficiency for a relatively large range 

of forcing amplitudes. However, the NPPF controller can be also detuned for very strongly 

nonlinear regimes. This is because inherently nonlinear dynamical instabilities such as isolas 

cannot be eliminated by the proposed controller. The analytical study was also validated on an 

experimental test bed which exhibits the same dynamics as that of a Duffing oscillator. The 

obtained results correspond well with the theoretical predictions. 
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