Paper published in a journal (Scientific congresses and symposiums)
Unconstrained Monotonic Neural Networks
Wehenkel, Antoine; Louppe, Gilles
2019In Advances in Neural Information Processing Systems
Peer Reviewed verified by ORBi
 

Files


Full Text
UMNN_Wehenkel_2019.pdf
Author preprint (1.02 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Neural Networks; Artificial Intelligence; Normalizing Flows; Density estimator; Probability distribution; Monotonicity
Abstract :
[en] Monotonic neural networks have recently been proposed as a way to define invertible transformations. These transformations can be combined into powerful autoregressive flows that have been shown to be universal approximators of continuous probability distributions. Architectures that ensure monotonicity typically enforce constraints on weights and activation functions, which enables invertibility but leads to a cap on the expressiveness of the resulting transformations. In this work, we propose the Unconstrained Monotonic Neural Network (UMNN) architecture based on the insight that a function is monotonic as long as its derivative is strictly positive. In particular, this latter condition can be enforced with a free-form neural network whose only constraint is the positiveness of its output. We evaluate our new invertible building block within a new autoregressive flow (UMNN-MAF) and demonstrate its effectiveness on density estimation experiments. We also illustrate the ability of UMNNs to improve variational inference.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Computer science
Mathematics
Author, co-author :
Wehenkel, Antoine  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Louppe, Gilles  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Language :
English
Title :
Unconstrained Monotonic Neural Networks
Publication date :
August 2019
Event name :
Neural Information Processing Systems 2019
Event place :
Vancouver, Canada
Event date :
December 2019
Audience :
International
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 27 August 2019

Statistics


Number of views
97 (21 by ULiège)
Number of downloads
77 (7 by ULiège)

Scopus citations®
 
79
Scopus citations®
without self-citations
75

Bibliography


Similar publications



Contact ORBi