[en] There is a consensus in the aerospace research community that future aircraft will be more flexible and their wings will be more highly loaded. While this development is likely to increase aircraft efficiency, it poses several aeroelastic questions. Current aeroelastic tailoring practice for early preliminary aircraft design relies on linear aerodynamic modeling, unable to predict shocks. On the other hand, nonlinear solvers, although they provide a wide range of functionality and are reliable, often consist in monolithic code structures and cannot be efficiently coupled to external structural mechanics codes. They are therefore usually not readily usable for coupled fluid-structure interaction computations.
The objective of the present work is to carry out aerodynamic and static aeroelastic computations in the context of preliminary aircraft design. To this end, an open-source, fast and reliable, unstructured finite element, Full Potential solver has been developed. Preliminary results are presented and show a significant improvement over the classical linear potential method and are in good agreement with higher fidelity nonlinear solvers.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Crovato, Adrien ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Güner, Hüseyin ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Dimitriadis, Grigorios ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Almeida, Hugo; Embraer S.A.
Prado, Alex; Embraer S.A.
Breviglieri, Carlos; Embraer S.A.
Cabral, Pedro; Embraer S.A.
Silva, Gustavo; DLR German Aerospace Center
Language :
English
Title :
A Full Potential Static Aeroelastic Solver for Preliminary Aircraft Design
Publication date :
2019
Event name :
18th International Forum on Aeroelasticity and Structural Dynamics
Event place :
Savannah, United States
Event date :
from 9-06-2019 to 13-06-2019
Audience :
International
Main work title :
Proceedings of the 18th International Forum on Aeroelasticity and Structural Dynamics (IFASD2019)
Publisher :
International Forum on Aeroelasticity and Structural Dynamics
Peer reviewed :
Editorial reviewed
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Crovato, A., Dimitriadis, G., and Terrapon, V. (2018). Higher fidelity transonic aerodynamic modeling for preliminary aircraft design. In 31st Congress of the International Council of the Aeronautical Sciences. International Council of the Aeronautical Sciences.
Palacios, F., Colonno, M., Aranake, A., et al. (2013). Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design. AIAA Paper, 287, 2013.
Economon, T., Palacios, F., Copeland, S., et al. (2016). Stanford University Unstructured (SU2): An open-source suite for multi-physics simulation and design. AIAA Journal.
Johnson, F., Samant, S., Bieterman, M., et al. (1992). Tranair: A full-potential, solutionadaptative, rectangular grid-code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Tech. rep., NASA.
(2019). Waves. https://github.com/ulgltas/waves.
Carmichael, R. and Erickson, L. (1981). Panair: A higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations. AIAA journal.
Albano, E. and Rodden, W. (1969). A doublet-lattice method for calulation lift distributions on oscillatiing surfaces in subsonic flows. AIAA journal.
(2019). METAFOR, A nonlinear finite element code, University of Liege. http://metafor.ltas.ulg.ac.be/.
(2019). Modal solver for FSI computations. https://github.com/ulgltas/ModalSolver.
Fleury, C. (1994-1995). Optimisation des structures. Theory course, University of Liege.
(2019). MUMPS: MUltifrontal Massively Parallel sparse direct solver. http://mumps.enseeiht.fr/.
Nishida, B. (1996). Fully Simultaneous Coupling of the Full Potential Equation and the Integral Boundary Layer Equations in Three Dimensions. Ph.D. thesis, Massachussets Institute of Technology.
Galbraith, M., Allmaras, S., and Haimes, R. (2017). Full potential revisited: A medium fidelty aerodynamic analysis tool. In 55th AIAA Aerospace Sciences Meeting, SciTech Forum. AIAA.
Hafez, M., Murman, E., and South, J. J. (1979). Artificial compressibility methods for numerical solution of transonic full potential equation. AIAA journal.
Eberle, A. (1978). A finite volume method for calculating transonic potential flow around wings from the pressure minimum integral. NASA.
Beazley, D. M. (1996). Swig: An easy to use tool for integrating scripting languages with c and c++. In Proceedings of the 4th conference on USENIX Tcl/Tk Workshop, vol. 4. USENIX Association, p. 15.
Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79, 1309–1331.
Thomas, D., Cerquaglia, M., Boman, R., et al. (2019). Cupydo: An integrated python environement for coupled fluid-structure problems. Advances in Engineering Software.
Cerquaglia, M., Thomas, D., Boman, R., et al. (In press, 2019). A fully partitioned lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects. Computer Methods in Applied Mechanics and Engineering.
Thomas, D., Variyar, A., Boman, R., et al. (2017). Staggered strong coupling between existing fluid and solid solvers through a python interface for fluid-structure interaction problems. In VII International Conference on Computational Methods for Coupled Problems in Science and Engineering. pp. 645–660.
Goura, G. (2001). Time marching analysis of flutter using computational fluid dynamics. Ph.D. thesis, University of Glasgow.