Wang, J.; Department of Engineering Mechanics & Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, China
Zhang, Yajun ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Sahoo, M. P. K.; Department of Engineering Mechanics & Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, China
Shimada, T.; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto, 615-8540, Japan
Kitamura, T.; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto, 615-8540, Japan
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Zhang, T.-Y.; Shanghai University Materials Genome Institute and Shanghai Materials Genome Institute, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
Language :
English
Title :
Giant magnetoelectric effect at the graphone/ferroelectric interface
Publication date :
2018
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Publishing Group
Volume :
8
Pages :
12448
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
HiT4FiTDivision of Arctic SciencesNatural Science Foundation of Zhejiang Province: LZ17A020001National Natural Science Foundation of China: 11672264, 11472242, 11621062Fundamental Research Funds for the Central Universities: 2018XZZX001-05
Fiebig, M., Lottermoser, T., Frohlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)
Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)
Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)
Scott, J. F. Data storage - Multiferroic memories. Nat Mater. 6, 256–257 (2007)
Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)
Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)
Rondinelli, J. M., Stengel, M. & Spaldin, N. A. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat. Nanotechnol. 3, 46–50 (2008)
Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015)
Dai, J.-Q., Song, Y.-M. & Zhang, H. Magnetoelectric coupling at the epitaxial Ni/PbTiO3 heterointerface from first principles. Phys. B: Condens. Matter 456, 383–387 (2015)
Zhang, C. et al. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface. Nanoscale 7, 4187–4192 (2015)
Zhang, H., Dai, J.-Q. & Song, Y.-M. Influences of interfacial terminations on electronic structure and magnetoelectric coupling in Fe/KnbO3 superlattices. Chem. Phys. Lett. 619, 163–168 (2015)
Jia, C. L. et al. Mechanism of interfacial magnetoelectric coupling in composite multiferroics. Phys. Rev. B 90, 054423 (2014)
Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006)
Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753–758 (2011)
Radaelli, G. et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nat. Commun. 5, 3404 (2014)
Shimada, T. et al. Multiferroic grain boundaries in oxygen-deficient ferroelectric lead titanate. Nano Lett. 15, 27–33 (2015)
Shimada, T. et al. Multiferroic vacancies at ferroelectric PbTiO3 surfaces. Phys. Rev. Lett. 115, 107202 (2015)
Naumov, I. I., Bellaiche, L. & Fu, H. X. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004)
Polking, M. J. et al. Ferroelectric order in individual nanometre-scale crystals. Nature Mater. 11, 700–709 (2012)
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003)
Puggioni, D., Giovannetti, G. & Rondinelli, J. M. Polar metals as electrodes to suppress the critical-thickness limit in ferroelectric nanocapacitors. arXiv preprint arXiv:1611.06300 (2016)
Geneste, G., Bousquet, E., Junquera, J. & Ghosez, P. Finite-size effects in BaTiO3 nanowires. Appl. Phys. Lett. 88, 112906 (2006)
Gerra, G., Tagantsev, A. K., Setter, N. & Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett. 96, 107603 (2006)
Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nature Mater. 8, 392–397 (2009)
Tenne, D. A. et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006)
Sai, N., Fennie, C. J. & Demkov, A. A. Absence of critical thickness in an ultrathin improper ferroelectric film. Phys. Rev. Lett. 102, 107601 (2009)
Zhang, Y., Li, G.-P., Shimada, T., Wang, J. & Kitamura, T. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZrO3 films. Phys. Rev. B 90, 184107 (2014)
Lichtensteiger, C., Triscone, J. M., Junquera, J. & Ghosez, P. Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603 (2005)
Despont, L. et al. Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Phys. Rev. B 73, 094110 (2006)
Boukhvalov, D. W., Katsnelson, M. I. & Lichtenstein, A. I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008)
Zhou, J. et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009)
Yazyev, O. V. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007)
Okada, S. Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures. Phys. Rev. B 77, 041408 (2008)
Zanella, I., Fagan, S. B., Mota, R. & Fazzio, A. Electronic and magnetic properties of Ti and Fe on graphene. J. Phys. Chem. C 112, 9163–9167 (2008)
Sevincli, H., Topsakal, M., Durgun, E. & Ciraci, S. Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 77, 195434 (2008)
Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 3119215 (2009)
Hong, X. et al. Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3. Appl. Phys. Lett. 97, 3467450 (2010)
Song, E. B. et al. Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99, 3619816 (2011)
Zheng, Y. et al. Graphene field-effect transistors with ferroelectric gating. Phys. Rev. Lett. 105, 166602 (2010)
Jie, W. et al. Ferroelectric polarization effects on the transport properties of graphene/PMN-PT field effect transistors. J. Phys. Chem. C 117, 13747–13752 (2013)
Wang, X., Xie, W. & Xu, J.-B. Graphene based non-volatile memory devices. Adv. Mater. 26, 5496–5503 (2014)
Ni, G.-X. et al. Graphene-ferroelectric hybrid structure for flexible transparent electrodes. ACS Nano 6, 3935–3942 (2012)
Jie, W. & Hao, J. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale 6, 6346–6362 (2014)
Baeumer, C. et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat. Commun. 6, 7136 (2015)
Yusuf, M. H., Nielsen, B., Dawber, M. & Du, X. Extrinsic and intrinsic charge trapping at the graphene/ferroelectric interface. Nano Lett. 14, 5437–5444 (2014)
Zanolli, Z. Graphene-multiferroic interfaces for spintronics applications. Sci. Rep. 6, 31346 (2016)
Kresse, G. & Hafner, J. Ab-initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B 48, 13115–13118 (1993)
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)
Polanco, M. A. M. et al. Stabilization of highly polarized PbTiO3 nanoscale capacitors due to in-plane symmetry breaking at the interface. Phys. Rev. B 85, 214107 (2012)
Gerra, G. et al. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett. 96, 107603 (2006)
Rault, J. et al. Thickness-dependent polarization of strained BiFeO3 films with constant tetragonality. Phys. Rev. Lett. 109, 267601 (2012)
Dai, J. Q., Song, Y. M. & Zhang, H. Enhancement of magnetoelectric effect by combining different interfacial coupling mechanisms. J. Appl. Phys. 111, 114301 (2012)
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSD+U study. Phys. Rev. B 57, 1505 (1998)
Dawber, M. et al. Tailoring the properties of artificially layered ferroelectric superlattices. Adv. Mater. 19, 4153–4159 (2007)
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)
Gajdos, M., Hummer, K., Kresse, G., Furthmuller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)