Deciphering the combined effect of bone morphogenetic protein 6 (BMP6) and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Ji, W.; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
Kerckhofs, G.; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium, Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Belgium
Geeroms, C.; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
Maréchal, Marine ; Université de Liège - ULiège > Département ArGEnCo > Lucid - Lab for User Cognition & Innovative Design
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Luyten, F. P.; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
Language :
English
Title :
Deciphering the combined effect of bone morphogenetic protein 6 (BMP6) and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs
Publication date :
2018
Journal title :
Acta Biomaterialia
ISSN :
1742-7061
eISSN :
1878-7568
Publisher :
Acta Materialia Inc
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 294191 - REJOIND - The manufacturing of a biological tissue: REgeneration of the JOINt by Developmental engineering
Name of the research project :
Hercules Foundation (Project AKUL09/001)
Funders :
ERC - European Research Council Hercules Foundation FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen CE - Commission Europ�enne
Meling, T., Harboe, K., Soreide, K., Incidence of traumatic long-bone fractures requiring in-hospital management: a prospective age- and gender-specific analysis of 4890 fractures. Injury 40:11 (2009), 1212–1219.
Buza, J.A., Einhorn, T., Bone healing in 2016. Clin. Cases Miner. Bone 13:2 (2016), 101–105.
Grayson, W.L., Bunnell, B.A., Martin, E., Frazier, T., Hung, B.P., Gimble, J.M., Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol. 11:3 (2015), 140–150.
Mills, L.A., Simpson, A.H., The relative incidence of fracture non-union in the Scottish population (5.17 million): a 5-year epidemiological study. BMJ Open, 3(2), 2013.
Holmes, D., Non-union bone fracture: a quicker fix. Nature, 550(7677), 2017, S193.
Niedzielski, K., Synder, M., The treatment of pseudarthrosis using the Ilizarov method. Ortop Traumatol. Rehabil. 2:3 (2000), 46–48.
Loebel, C., Burdick, J.A., Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell 22:3 (2018), 325–339.
Ji, W., Bolander, J., Chai, Y.C., Katagiri, H., Marechal, M., Luyten, F.P., Toward advanced therapy medicinal products (ATMPs) combining bone morphogenetic proteins (BMP) and cells for bone regeneration. Vukicevic, S., Sampath, K.T., (eds.) Bone Morphogenetic Proteins: Systems Biology Regulators, 2017, Springer, Cham, 127–169.
Ollivier, M., Gay, A.M., Cerlier, A., Lunebourg, A., Argenson, J.N., Parratte, S., Can we achieve bone healing using the diamond concept without bone grafting for recalcitrant tibial nonunions?. Injury 46:7 (2015), 1383–1388.
Colnot, C., Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24:2 (2009), 274–282.
Roberts, S.J., van Gastel, N., Carmeliet, G., Luyten, F.P., Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70 (2015), 10–18.
De Bari, C., Dell'Accio, F., Luyten, F.P., Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44:1 (2001), 85–95.
Leijten, J., Chai, Y.C., Papantoniou, I., Geris, L., Schrooten, J., Luyten, F.P., Cell based advanced therapeutic medicinal products for bone repair: Keep it simple?. Adv. Drug Delivery Rev. 84 (2015), 30–44.
Duchamp de Lageneste, O., Julien, A., Abou-Khalil, R., Frangi, G., Carvalho, C., Cagnard, N., Cordier, C., Conway, S.J., Colnot, C., Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun., 9(1), 2018, 773.
Chai, Y.C., Carlier, A., Bolander, J., Roberts, S.J., Geris, L., Schrooten, J., Van Oosterwyck, H., Luyten, F.P., Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 8:11 (2012), 3876–3887.
Xu, H.H., Wang, P., Wang, L., Bao, C., Chen, Q., Weir, M.D., Chow, L.C., Zhao, L., Zhou, X., Reynolds, M.A., Calcium phosphate cements for bone engineering and their biological properties. Bone Res., 5, 2017, 17056.
Denry, I., Kuhn, L.T., Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent. Mater. 32:1 (2016), 43–53.
Bolander, J., Chai, Y.C., Geris, L., Schrooten, J., Lambrechts, D., Roberts, S.J., Luyten, F.P., Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates. Biomaterials 86 (2016), 106–118.
Chai, Y.C., Roberts, S.J., Desmet, E., Kerckhofs, G., van Gastel, N., Geris, L., Carmeliet, G., Schrooten, J., Luyten, F.P., Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials 33:11 (2012), 3127–3142.
Roberts, S.J., Geris, L., Kerckhofs, G., Desmet, E., Schrooten, J., Luyten, F.P., The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32:19 (2011), 4393–4405.
Kerckhofs, G., Chai, Y.C., Luyten, F.P., Geris, L., Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation. Acta Biomater. 35 (2016), 330–340.
Bishop, G.B., Einhorn, T.A., Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int. Orthop. 31:6 (2007), 721–727.
White, A.P., Vaccaro, A.R., Hall, J.A., Whang, P.G., Friel, B.C., McKee, M.D., Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int. Orthop. 31:6 (2007), 735–741.
Vukicevic, S., Oppermann, H., Verbanac, D., Jankolija, M., Popek, I., Curak, J., Brkljacic, J., Pauk, M., Erjavec, I., Francetic, I., Dumic-Cule, I., Jelic, M., Durdevic, D., Vlahovic, T., Novak, R., Kufner, V., Bordukalo Niksic, T., Kozlovic, M., Banic Tomisic, Z., Bubic-Spoljar, J., Bastalic, I., Vikic-Topic, S., Peric, M., Pecina, M., Grgurevic, L., The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int. Orthop. 38:3 (2014), 635–647.
Lissenberg-Thunnissen, S.N., de Gorter, D.J., Sier, C.F., Schipper, I.B., Use and efficacy of bone morphogenetic proteins in fracture healing. Int. Orthop. 35:9 (2011), 1271–1280.
Bolander, J., Ji, W., Geris, L., Bloemen, V., Chai, Y.C., Schrooten, J., Luyten, F.P., The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells. Eur. Cell Mater. 31 (2016), 11–25.
Manhas, V., Guyot, Y., Kerckhofs, G., Chai, Y.C., Geris, L., Computational modelling of local calcium ions release from calcium phosphate-based scaffolds. Biomech. Model. Mech. 16:2 (2017), 425–438.
Warburg, O., On the origin of cancer cells. Science 123:3191 (1956), 309–314.
Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:5930 (2009), 1029–1033.
Tsai, K.S., Kao, S.Y., Wang, C.Y., Wang, Y.J., Wang, J.P., Hung, S.C., Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J. Biomed. Mater. Res. A 94:3 (2010), 673–682.
Bessa, P.C., Casal, M., Reis, R.L., Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J. Tissue Eng. Regene. Med. 2:1 (2008), 1–13.
Rahman, M.S., Akhtar, N., Jamil, H.M., Banik, R.S., Asaduzzaman, S.M., TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res., 3, 2015, 15005.
Agell, N., Bachs, O., Rocamora, N., Villalonga, P., Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signallin 14:8 (2002), 649–654.
Wang, R.N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R.C., Kang, R., Mok, J., Lee, M.J., Luu, H.L., Shi, L.L., Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 1:1 (2014), 87–105.
Zi, Z., Chapnick, D.A., Liu, X., Dynamics of TGF-beta/Smad signaling. FEBS Lett. 586:14 (2012), 1921–1928.
Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A.N., Kwiatkowski, W., Affolter, M., Vale, W.W., Izpisua Belmonte, J.C., Choe, S., Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420:6916 (2002), 636–642.
Marsell, R., Einhorn, T.A., The biology of fracture healing. Injury 42:6 (2011), 551–555.
Holmes, D., Closing the gap. Nature 550:7677 (2017), S194–S195.