Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Verbeeck, L.; Prometheus, Div of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium, Tissue Engineering laboratory, SBERC, KU Leuven, Leuven, Belgium
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Tylzanowski, P.; Development & Stem Cell Biology laboratory, SBERC, KU Leuven, Leuven, Belgium, Dept of Bioch. & Mol Biol., Medical University Lublin, Lublin, Poland
Luyten, F. P.; Prometheus, Div of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium, Tissue Engineering laboratory, SBERC, KU Leuven, Leuven, Belgium, Development & Stem Cell Biology laboratory, SBERC, KU Leuven, Leuven, Belgium
Language :
English
Title :
Uncoupling of in-vitro identity of embryonic limb derived skeletal progenitors and their in-vivo bone forming potential
Arrington, E. D., Smith, W. J., Chambers, H. G., Bucknell, A. L. & Davino, N. A. Complications of iliac crest bone graft harvesting. Clinical orthopaedics and related research, 300–309 (1996).
Banwart, J. C., Asher, M. A. & Hassanein, R. S. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20, 1055–1060 (1995).
Greenwald, A. S. et al. Bone-graft substitutes: facts, fictions, and applications. The Journal of bone and joint surgery. American volume 83-A(Suppl 2 Pt 2), 98–103 (2001).
Kozhemyakina, E., Lassar, A. B. & Zelzer, E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development (Cambridge, England) 142, 817–831, 10.1242/dev.105536 (2015).
Roberts, S. J., van Gastel, N., Carmeliet, G. & Luyten, F. P. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70, 10–18, 10.1016/j.bone.2014.08.007 (2015).
Colnot, C., Lu, C., Hu, D. & Helms, J. A. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol 269, 55–69, 10.1016/j.ydbio.2004.01.011 (2004).
Bolander, J. et al. Healing of a Large Long-Bone Defect through Serum-Free In Vitro Priming of Human Periosteum-Derived Cells. Stem Cell Reports 8, 758–772, 10.1016/j.stemcr.2017.01.005 (2017).
Duchamp de Lageneste, O. et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9, 773, 10.1038/s41467-018-03124-z (2018).
Worthley, D. L. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284, 10.1016/j.cell.2014.11.042 (2015).
Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168, 10.1016/j.stem.2014.06.008 (2014).
Shi, Y. et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 8, 2043, 10.1038/s41467-017-02171-2 (2017).
Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834, 10.1038/nature09262 (2010).
Chan, C. K. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298, 10.1016/j.cell.2014.12.002 (2015).
van Gastel, N. et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem cells (Dayton, Ohio) 32, 2407–2418, 10.1002/stem.1783 (2014).
Fernando, W. A. et al. Limb derived cells as a paradigm for engineering self-assembling skeletal tissues. J Tissue Eng Regen Med, 10.1002/term.2498 (2017).
Lenas, P., Moos, M. & Luyten, F. P. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue engineering. Part B, Reviews 15, 381–394, 10.1089/ten.TEB.2008.0575 (2009).
Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Progress in polymer science 37, 106–126, 10.1016/j.progpolymsci.2011.06.003 (2012).
Dashtdar, H. et al. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 29, 1336–1342, 10.1002/jor.21413 (2011).
Tuan, R. S., Boland, G. & Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5, 32–45 (2003).
Fernando, W. A. et al. Limb derived cells as a paradigm for engineering self-assembling skeletal tissues. Journal of Tissue Engineering and Regenerative Medicine 12, 794–807, 10.1002/term.2498 (2018).
Yang, L., Tsang, K. Y., Tang, H. C., Chan, D. & Cheah, K. S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of the National Academy of Sciences of the United States of America 111, 12097–12102, 10.1073/pnas.1302703111 (2014).
Wong, S. A. et al. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering. Frontiers in bioengineering and biotechnology 6, 58, 10.3389/fbioe.2018.00058 (2018).
Aghajanian, P. & Mohan, S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Research 6, 19, 10.1038/s41413-018-0021-z (2018).
Gulati, G. S. et al. Isolation and functional assessment of mouse skeletal stem cell lineage. Nature Protocols 13, 1294, 10.1038/nprot.2018.041, https://www.nature.com/articles/nprot.2018.041#supplementary-information (2018).
Marecic, O. et al. Identification and characterization of an injury-induced skeletal progenitor. Proceedings of the National Academy of Sciences 112, 9920–9925, 10.1073/pnas.1513066112 (2015).
Tevlin, R. et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med 9, 10.1126/scitranslmed.aag2809 (2017).
Hassan, M. Q. et al. HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes. Molecular and Cellular Biology 27, 3337–3352, 10.1128/MCB.01544-06 (2007).
Gurdon, J. B., Tiller, E., Roberts, J. & Kato, K. A community effect in muscle development. Current biology: CB 3, 1–11 (1993).
Eiselleova, L. et al. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem cells (Dayton, Ohio) 27, 1847–1857, 10.1002/stem.128 (2009).
Lotz, S. et al. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. PloS one 8, e56289, 10.1371/journal.pone.0056289 (2013).
Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Reviews Genetics 8, 263, 10.1038/nrg2046 (2007).